Postoperative Care Following Pediatric Cardiac Surgery

Essay

For partial fulfillment of Master Degree in Intensive care

Submitted by

Hany Ahmed Ali Salim

M.B.B.CH

Supervised by

Prof. Dr.: Madiha Metwaly Zidan

Prof. of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Mahmod Hassan Mohamed

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Heba Abdelazem Labeb

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2013□

سورة البقرة الآية: ٣٢

All braise are to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this essay, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Or. Madiha Metwaly Zidan** Prof. of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for her continuous encouragement, her kind support and appreciated suggestions that guided me to accomplish this work.

I am also grateful to **Dr. Mahmod Hassan Mohamed,** Lecturer of Anaesthesia and Intensive Care,
Faculty of Medicine, Ain Shams University who freely gave
his time, effort and experience along with continuous
guidance through out this work.

Warm gratitude is paid to **Dr. Heba Abdelazem Labeb**, Lecturer of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her keen supervision and cooperative guidance. She has kindly and sincerely made to help me throughout the study.

Hany Ahmed Ali

Contents

Subjects	Page
List of abbreviations	I
• List of Tables	IV
• List of figures	V
• Introduction	1
Aim of the work	4
Anatomical and physiological considerations	5
Classification of congenital heart disease	20
Pre-operative preparation for operation	49
Postoperative management of pediatric patient	after cardiac
surgery	77
• Summary	155
• References	162
Arabic summary	

List of Abbreviations

AP : Anterioposterior

APTT: Activated partial thromboplastin time

ASD : Atrial septal defect

AV : Atrioventricular

AVSD : Atrioventricular septal defect

BAS : Balloon atrial septostomy

BAS : Balloon atrial septostomy

BIS: Bispectral index monitoring

BIS: Bispectral index monitoring

BTS : Blalock-Taussig shunt

CAVC : Complete atrioventricular canal

CFAM: Continuous cerebral function monitoring

CHD : Congenital heart diseases

CHEOPS: Children's Hospital of Estern Ontario Pain

Scale

CHF : Congestive heart failure

CICU : Cardiac intensive care unite

CMR : Cardiac magnetic resonance

CO : Cardiac output

CPAP : Continuous positive airway pressure

🕏 List of Abbreviations 🗷

CPB : Cardiopulmonary bypass

CT : Computed tomography

CXR : Chest x ray

2D : 2 dimension

DIC: Disseminated intravascular coagulation

EEG : Electroencephalographic

HCM: Hypertrophic cardiomyopathy

HLHS: Hypoplastic left heart syndrome

ICG: Indocyanine green

ICU: Intensive care unite

IVC: Inferior vena cava

MRA : Magnetic resonance angiography

MRI : Magnetic resonance imaging

NICO: Partial CO2 rebreathing Fick monitoring

NICU: Neonatal intensive care unite

NO : Nitric oxide

NSAIDs: Nonsteroidal anti-inflammatory drugs

OPS: Objective Pain Scale

PA: Pulmonary artery

PCCO: Calibrated continuous arterial pulse contour

cardiac Output

PDA : Patent dactusarteriorus

🕏 List of Abbreviations 🗷

PGE1 : Prostaglandine e 1

PH: Pulmonary hypertention

PICU: Pediatric intensive care unite

PT: Prothrombin time

PVR : Peripheral vascular resistance

RACHS: Risk-Adjusted Congenital Heart Surgery

RSV : Respiratory syncytial virus

RV : Right ventricle

SIRS : systemic inflamtory response syndrome

SVAS : Supravalvar Aortic Stenosis

SVC : Superior vena cava

SVR : Systemic vascular resistance

TEG: Thromboelastogram

TGA: Transposition of great artries

TOE: Transoesophageal Echocardiography

TOF : Tetralogy of fallot

TPN: Total parenteral nutrition

VAS: Visual Analogue Scale

VSD : Ventricular septal defect

List of Tables

Tables	Title	Page
No.	Tiuc	No.
Table (1)	Postoperative monitoring techniques	79
Table (2)	Essential areas to cover in transfers	89
	from OR to ICU.	
Table (3)	NSAIDs commonly used for	114
	postoperative pain relief in adult and	
	pediatric patients.	
Table (4)	Opioids commonly used for pain relief	114
	in children.	
Table (5)	Daily Fluid Maintenance Requirements.	116
Table (6)	Fluid therapy for the premature infant	117
	(day 1).	
Table (7)	Postoperative period Fluid management	117
	in the immediate.	
Table (8)	Treatment algorithm for oliguria or	143
	anuria	

List of Figures

Figure	Title	Page
No.		No.
Fig. (1)	Gross anatomy of the heart.	5
Fig. (2)	Schematic diagram of typical	15
	cardiopulmonary bypass circuit	
	displaying the components.	
Fig. (3)	Cardiopulmonary pypass machine.	17
Fig. (4)	Heart anatomic view of right ventricle	22
	and right atrium with example atrial	
	septal defects.	
Fig. (5)	Acase of complete AV septal defect.	25
Fig. (6)	Heart anatomic view of right ventricle	
	and right atrium with example	27
	ventricular septal defects.	
Fig. (7)	Truncus arteriosus.	29
Fig.(8)	Tetralogy of fallot.	31
Fig. (9)	Tricuspid atresia.	33
Fig. (10)	Ebstein anomaly.	35
Fig. (11)	Double inlet ventricle.	36
Fig. (12)	Pulmonary stenosis.	37
Fig. (13)	Aortic stenosis.	38
Fig. (14)	CHD with obstruction to blood	39
	progression and no septal defect (no	
	shunt).	

🕏 List of Figures 🗷

Figure No.	Title	Page No.
Fig. (15)	Fetal circulation: schematic	40
	representation.	
Fig. (16)	CHD incompatible with postnatal blood	42
	circulation: ductus-dependent	
	circulation.	
Fig. (17)	CHD incompatible with postnatal blood	44
	circulation: ductus-dependent	
	circulation.	
Fig. (18)	CHD incompatible with postnatal blood	46
	circulation: anomalous connection or	
	obstruction of the pulmonary veins.	
Fig. (19)	Three-dimensional echocardiographic	61
	images from a 12-year-old child with a	
	restrictive ventricular septal defect	
	(VSD). (A) Paramembranous VSD	
	viewed from right ventricular aspect.	
Fig. (20)	Lateral (L) and posterior (P) views of	65
	MR angiography in arterial phase	
	showing discrete juxtaductalcoarctation	
	with extensive arterial collaterals	
	between upper and lower body.	
Fig. (21)	Cheops Score: SUM (points for all 6	107
	parameters). Minimum score: 4 (min	
	pain); Maximum score: 13 (max pain).	

🕏 List of Figures Z

Figure No.	Title	Page No.
Fig. (22)	Objective Pain Scale (OPS) Minimum	109
	score: 0; Maximum score: 10 Maximum	
	score if too young to complain of pain:	
	8. The higher the score the greater the	
	degree of pain.	
Fig. (23)	The comfort scale.	110
Fig. (24)	A, Visual analogue scale (VAS) This	112
	scale incorporates a visual analogue	
	scale, a descriptive word scale and	
	acolour scale all in one tool. B, Facial	
	pains scale.	
Fig. (25)	WHO guidelines for pain therapy.	113
Fig. (26)	Low cardiac output syndrome after	129
	arterial switch surgery. During the early	
	postoperative period after arterial switch	
	surgery, increases in both ventricular	
	afterload and myocardial dysfunction	
	occur frequently, leading to the	
	development of low-cardiac-output	
	syndrome.	
Fig. (27)	Cranial ultrasound images in neonates.	132
	Panel A shows a normal exam. Panel B	
	shows ventricular dilatation and	
	intraventricular bleeding.	

🕏 List of Figures Z

Figure No.	Title	Page No.
Fig. (28)	Truncusarteriosus repair.	145
Fig. (29)	Arterial switch repair for transposition of the great arteries.	147
Fig. (30)	Rastelli procedure repair for transposition of the great arteries.	147
Fig. (31)	Mustard/ Senning repair for transposition of the great arteries.	148
Fig. (32)	A, Norwood procedure and BT shunt.B, The Sano modification.	150
Fig. (33)	Glenn procedure.	151
Fig. (34)	A and B, Fontan procedure.	152

Introduction

Recent development of surgical interventions have contributed to Substantial improvements in morbidity and mortality of children with congenital cardiac defects.

Innovations in achieving early and correct preoperative diagnoses, Operative techniques, methods of extracorporeal circulation and myocardial protection, and renal replacement therapy have encouraged surgeons to attempt surgical correction for more severe cardiac anomalies, more premature babies, and lower-body-weight babies (*Wernovsky et al.*, 2001).

Heart surgery in children is done to repair heart defects a child is born with (congenital heart defects) and heart diseases a child gets after birth that need surgery. The surgery is needed for the child's well-being. There are many kinds of heart defects. Some are minor, and others are more serious. Defects can occur inside the heart or in the large blood vessels outside the heart. Some heart defects may need surgery right after the baby is born. For others, your child may be able to safely wait for months or years to have surgery. One surgery may be enough to repair the heart defect, but sometimes a series of procedures is needed (*Bonow et al.*, 2007).

The development of cardiopulmonary bypass (CPB) has brought cardiac surgery from a very limited and hazardous endeavor to a routine and relatively safe practice that addresses an incredible variety of diseases and conditions in patients from a few hours to nine or decades old (*Mammen et al.*, 1985).

With facilities for accurate diagnosis and scope of complete correction, more and more children and infants are undergoing surgical treatment for congenital heart disease in the neonatal period and infancy, and there is an increasing demand for dedicated personnel for the specialized intensive care of these critically ill children. This has translated into better outcomes in several centers (*Balachandran et al.*, 2010).

Pediatric cardiac intensive care has evolved as a distinct limb of efficient pediatric cardiac programs in the developed nations. With increasing demand for congenital heart surgery in the developing nations, concept of pediatric cardiac intensive care units (PCICU) is critical to the success of these programs. In the early years of development of congenital heart surgery, the pediatric cardiac surgeons were primarily responsible for postoperative intensive care. Over the past three decades, other pediatric cardiac professionals (cardiology, cardiac anesthesia, critical care physicians, and

ancillary staff) have started contributing increasingly to the care of these patients .Thus, pediatric cardiac intensive care has emerged as a new subspecialty to cater to the unique need of children with congenital and acquired heart disease (*Stromberg*, 2004).