

STUDY ON DESIGN AND CONSTRUCION OF ULTRA-LONG SPAN CABLE STAYED BRIDGES DUE TO WIND LOAD

By

Hussein Ibraheim Hussein Nassar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

STUDY ON DESIGN AND CONSTRUCION OF ULTRA-LONG SPAN CABLE STAYED BRIDGES DUE TO WIND LOAD

By Hussein Ibraheim Hussein Nassar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

under the Supervision of

Prof. Dr. Mourad M. Bakhoum

Prof. Dr. FathyA. Saad

Professor of Structural Analysis and Mechanics Faculty of Engineering, Cairo University Professor of ConcreteStructures Faculty of Engineering, Ain shams University

STUDY ON DESIGN AND CONSTRUCION OF ULTRA-LONG SPAN CABLE STAYED BRIDGES DUE TO WIND LOAD

by Hussein Ibraheim Hussein Nassar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Amr Ali Abdel Rahman, Professor of Concrete Structures, Ain shams University, External Examiner

Prof. Dr. WalidAbd-ElattifAttia,Professor of StructuralAnalysis and Mechanics,Cairo University, Internal Examiner

Prof. Dr. Mourad M. Bakhoum, Professor of Structural Analysis and Mechanics, Cairo University, Thesis Advisor

Prof. Dr. FathyA. Saad, Professor of Concrete Structures, Ain shams University, Thesis Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014 Engineer's Name: Hussein Ibraheim Hussein Nassar

Date of Birth: 25/01/1983 **Nationality:** Egyptian

E-mail: Hussein.nassar.eng@Gmail.com

Phone: 01063554522

Address: 40Hussein El Ketamy street, Giza, Egypt

Registration Date:01/10/2009Awarding Date:..../..../......Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Mourad M. Bakhoum

Prof. Dr. FathyA. Saad

Examiners:

Prof. Dr. AmrAli Abdel Rahman (External Examiner) Prof. Dr. WalidAbd-ElattifAttia (Internal Examiner) Prof. Dr. Mourad M. Bakhoum (Thesis Advisor)

Prof. Dr. FathyA. Saad (Thesis Advisor)

Title of Thesis:

Study on design and construction of ultra-long span cable stayed bridges due to wind load

Key Words:

Ultra-long span; Cable stayed; Bridges; Wind Loads; temporary cable; analysis; design; optimization; pylon; side span supports; cable arrangement; cross sections.

Summary:

The primary objective of this research effort is to present proposals for optimal design and construction of Ultra-Long Span Cable Stayed Bridges due to wind loads. Three dimensional Finite Element Models were performed using advanced specialized Software (SAP 2000 and SOFISTIK), to study the design and stability of theseBridges during construction and in the final stage. Cable sag and target force are considered. Moreover, several examples were performed in order to verify the accuracy of the used software. The effect of several parameters are considered: cables arrangement, different pylon shapes, side span length, side span supports, deck cross-section (single cell and double cell), with main span 1500 meters. Since wind loads could have significant effects on Ultra-Long Span Cable Stayed Bridges during construction, hence, the thesis focuses on studying different installation and systems to illustrate their effect on these bridges. The results could give an assessment of the behavior of the bridges and deck due to aerodynamic wind forces, which may be the cause of significant instability. Finally, several proposals are presented to give a good illustration about the optimum sections for deck cross-sections and pylons; also the calculation of the quantity of the cables which is considered one the most important parameters in cable stayed bridge.

ACKNOWLEDGMENTS

So many people have contributed so much to this Thesis; it is difficult to know where to begin.

I would like to express my most sincere gratitude and appreciation to my advisor, prof. Dr.Mourad M.Bakhoumfor his guidance, encouragement, and patience throughout the completion my Thesis work. I would also like to thank him for many helpful suggestions for verification tosmall problems which has mentioned in Thesis and allowing me to understand the missing topics. Thanks for him for reading my thesis and offering me a great deal of important and relevant feedback. I can't forget his interesting to this Thesis and that he considered it important and useful study for engineers.

My second advisor, Prof. Dr.FathyA.Saad, has provided me with invaluable help and practical suggestions. Prof. Dr.Mourad M.Bakhoum suggestedProf. Dr. FathyA.Saad as a supervisor for this Thesis because of the large practical experience in the design and construction of cable stayed bridge. I especially thank him for the opportunities he has provided for interesting applications of my research and interaction with industry. Thanks for him for always knowing the right answer, and offering valuable insight to problems.Also through him, I became sufficiently familiar with the design and construction of cable stayed bridge.

I am also extremely grateful to Cairo and Ain shams university staff for the guidance, knowledge, understanding and helping me in my Thesis.

Finally, I must thank my Mum, Dad and my brothers, who has provided so much love and support. And of course, I want to thank all of those whose love makes the difference in my life. To my family, for being the light, joy, and fuel of my existence and for being my constant inspiration and support. For all I dedicate Thesis. Happy reading!

Table of Contents

CHAPTER (1): INTRODUCTION	1
1.1 Introduction	1
1.2 Motivation, Objectives and Scope of Work	1
1.3. Organization	2
CHAPTER (2): LITERATURE REVIEW	4
2.1. Introduction	4
2.2. Brief History of Cable Stayed Bridges	4
2.2.1 Overview	4
2.2.2 The innovation of Russky Island Bridge in Russia	8
2.2.2.1 Overview	8
2.2.2.2 Construction of Russky Bridge	9
2.2.3 The innovation of Sutong Bridge in China	10
2.2.3.1 Overview	10
2.2.3.2 Construction of Sutong Bridge	10
2.2.4 The innovation of Stonecutter Bridge in China	13
2.2.4.1 Overview	13
2.2.4.2 Construction of Stonecutter Bridge	13
2.2.5 The innovation of Tatara Bridge in China	16
2.2.5.1 Overview	16
2.2.5.2 Construction of Tatara Bridge	16
2.3 Milestone Aerodynamic for Cable Supported Bridges	19
2.4 Aerodynamics Considerations during Operation	20
2.4.1 Overview	20
2.4.2 Aeroelastic phenomena	20
2.4.2.1 Vortex shedding	21
2.4.2.2 Flutter	22
2.4.2.3 Buffeting	23
2.4.3 Oscillation of the stays	23
2.5 Innovative Solutions for Super Long Span Cable Stayed Bridge	24
CHAPTER (3): CONCEPTUAL DESIGN	26
3.1 Overview	26
3.2 Main aspects of Design	26

3.3 Available Structural Systems	26
3.3.1 Permanent bridge configuration	27
3.3.1.1 Range of side span	27
3.3.1.2 Number of intermediate supports in side span	27
3.3.1.3 Main cable arrangement	28
3.3.1.4 Pylon alternatives	30
3.3.1.5 Deck arrangement	31
3.3.2 Temporary stiffening during erection	33
3.3.2.1 Under-carriage cable	33
CHAPTER (4): STRUCTURAL MODELING OF BRIDGES	38
4.1 Introduction	38
4.2 Structural Modeling	38
4.2.1 Cable element modeling	38
4.2.1.1 Stay cables	38
4.2.1.2 Cable static	42
4.2.2 Deck and pylon modeling	43
4.3 The Analysis Program	43
4.3.1 Overview	43
4.3.2 Material properties	43
4.3.3 Section Properties	44
4.3.4 Geometry and FE-Model	45
4.3.5 Boundary conditions	47
4.3.6 Form finding of bridge	48
4.3.7 Analysis of temporary cables during construction	50
CHAPTER (5): VERIFICATION OF PROGRAMS	51
5.1 Overview	51
5.2 Verification on Skeletal Structure	51
5.2.1 Overview	51
5.2.2 Examples models dimensions and properties	51
5.2.3 Comparison of calculation	52
5.2.3.1 Comparison of straining action	52
5.2.3.2 Comparison of Eigen modes	52
5.3 Verification on Cable Supported Structures	54
5.3.1 Overview	54

5.3.2 Cantilever with one cable	54
5.3.2.1 Static analysis	54
5.3.2.2 Comparison of Eigen modes	56
5.3.3. Cantilever with two cables	56
5.3.3.1 Static analysis	56
5.3.3.2 Comparison of Eigen modes	58
5.3.4 Cantilever with three cables	58
5.3.4.1 Static analysis	58
5.3.4.2 Comparison of Eigen modes	60
5.4 Straining Action for all Cable Systems using SOFISTIK Form fin	ding60
5.5 Hand Calculation Verification on Cable Supported Structures	61
5.5.1 Comparison Active and Passive Cable Using SAP and So Program	
5.5.2 Hand Calculation for Active and Passive Cable	62
5.4.2.1 Passive Cable	62
5.4.2.2 Active Cable	63
CHAPTER (6): PARAMETRIC STUDY OF ULTRA-LONG SPAN STAYED BRIDGE	
6.1 Introduction	66
6.2 Geometrical Section Stiffness of Bridge	66
6.2.1 Deck configuration	66
6.2.1.1 Cross section	66
6.2.2 Pylon configuration	66
6.2.2.1 Cross section	66
6.2.3 Stay cable configuration	66
6.2.3.1 Cable data	66
6.3 Load Configuration	71
6.3.1 General	71
6.3.2 Permanent load	71
6.3.3 Live load	71
6.3.4 Wind load	73
6.3.4.1 Wind aerodynamic forces and load specifying	73
6.3.4.2 Load application	74
6.3.4.2.1 Deck wind load	74
6.3.4.2.1 Pylon wind load	76

6.3.4.2.1 Cable wind load	77
6.3.5 Load combination	78
6.3.5.1 Service load combination	78
6.3.5.2 Ultimate load combination	78
6.3.5.3 Fatigue load combination (SLS)	78
6.4 Bridge Parametric Configurations	79
6.4.1 General	79
6.4.2 Bridge models	79
6.5 Temporary Cables	82
6.5.1 General	82
6.5.2 Temporary cable models	82
6.5.2.1 Under-carriage cable	82
CHAPTER (7): ANALYSIS OF BRIDGES	85
7.1 Introduction	85
7.2 Cable Forces Comparison of Single Box, Single Pylon for Bridge with Different Side Span Supports	
7.2.1 Effect of side span (500m)	85
7.2.2 Effect of side span (600m)	87
7.2.3 Effect of side span (750m)	88
7.2.4 Effect of the variation in side span length	90
7.3 Cable Forces Comparison of Single box, Single Pylon under Bridge with Three Supports in Side Span	
7.3.1 Effect of side span (500m)	92
7.3.2 Effect of side span (600m)	92
7.3.3 Effect of side span (750m)	93
7.3.4 Effect of the variation in side span length	94
7.4 Deck Drift Comparison of Single Box, Single Pylon under Ere with Three Supports in Side Span	
7.4.1 Effect of side span (500m)	95
7.4.2 Effect of side span (600m)	96
7.4.3 Effect of side span (750m)	96
7.4.4 Effect of the variation in side span length	97
7.5 Cable Forces Comparison of Double Box, Single Pylon (T 500m Side Span	
7.5.1 Forces during operation	98
7.5.2 Forces during erection	99

7.5.3 Deck drift during erection
7.6 Cable Forces Comparison of Double Box, Double Frame Pylon with 500m Side Span
7.6.1 Forces during operation
7.6.2 Forces during erection
7.6.3 Deck drift during erection
7.7 Deck Configuration Effect on Forces and Drift
7.7.1 Overview
7.7.2 Forces during operation
7.7.3 Forces during erection
7.7.4 Deck drift during erection
7.8 Temporary Cables Configuration Optimization of a Single Pylon3 under Erection of Bridge with (500m) Side Span
7.8.1 Overview
7.8.2 Single box
7.8.3 Double box
7.9 Pylon Drift
CHAPTER (8): NATURAL FREQUENCIES AND PRINCIPLE MODE SHAPES
8.1 Introduction
8.2 Effect of Variation in Side Span with Interior Three Supports109
8.2.1 Side span (500m)
8.2.2 Side span (600m)
8.2.3 Side span (750m)
8.3 Effect of Variation of Double Box width for 500m, Three Supported Side Span with Pylon Type3
8.3.1 Double box frequency
8.4 Effect of Inclination of Double Framed Pylon for 500m, Three Supported Side Span
8.4.1 Vertical and inclined double frame
CHAPTER (9): DESIGN OF BRIDGES120
9.1 Introduction
9.2 Cable Stayed Bridge Design of Single Box, Double Box and Pylon (Type 3) with different Side Span
9.2.1 Cable design
9.2.2 Deck design

9.2.3 Pylon design	130
CHAPTER (10): SUMMARY, CONCLUSION AND RECFOR FUTURE WORK	
10.1 Summary	132
10.2 Conclusion	134
10.3 Recommendations for Future work	135
References	136
APPENDIX A	139
APPENDIX B	141

List of Figures

Figure	Page
Figure 2.1: Concept of Cable Stayed Bridge	5
Figure 2.2: Neuenkamp Bridge	5
Figure 2.3: Normandie Bridge	5
Figure 2.4: Sutong Cable Stayed Bridge in China [28]	7
Figure 2.5: Russky Cable Stayed Bridge in Russia [28]	7
Figure 2.6: Innovation of Russky Cable Stayed Bridge in Russia	8
Figure 2.7: Construction of Russky Cable Stayed Bridge [28]	9
Figure 2.8: Innovation of Sutong Cable Stayed Bridge in China	11
Figure 2.9: Construction of Sutong Cable Stayed Bridge [28]	12
Figure 2.10: Innovation of Stonecutters Cable Stayed Bridge in China	14
Figure 2.11: Construction of Stonecutter Cable Stayed Bridge [28]	15
Figure 2.12: Innovation of Tatara Cable Stayed Bridge in China	17
Figure 2.13: Construction of Tatara Cable Stayed Bridge [28]	18
Figure 2.14: Asymmetric Torsional of Tacoma Bridge	19
Figure 2.15: Torsional Mode of Tacoma Bridge	19
Figure 2.16: The Complete Collapse of Tacoma Bridge	20
Figure 2.17: Explanation of Vortex Shedding [28]	21
Figure 2.18: Bridge Flutter Vibration	22
Figure 2.19: Dynamic Response of a Slender Bridge Structure un Action	
Figure 2.20: Vibration Control with Viscous Dampers	24
Figure 2.21: Tie Cables against Rain-Wind Vibrations	25
Figure 3.1: Range of Side Span	27
Figure 3.2: Location of Intermediate Supports in Side Spans	28
Figure 3.3: Main Cable Arrangements	29
Figure 3.4: Conceptual Stiffening of Main Cable	30
Figure 3.5: Pylon Alternatives	31
Figure 3.6: Deck Arrangements for Steel Box Girder	32
Figure 3.7: Fine-Tuning of Leading Edge Angle for the Elimination Shedding	

Figure 3.8: Explanation of Double Box Aerodynamic [28]	33
Figure 3.9: Under-Carriage Temporary Cables	33
Figure 3.10: Conceptual Stiffening of Temporary Cables during Construction	.34
Figure 3.11: Conceptual Stiffening of Temporary Cables during Construct before closure	
Figure 4.1: Component of Locked Coil Strand [28]	39
Figure 4.2: Component of Parallel Wire Stay Cables (PWS) [28]	39
Figure 4.3: Components of Parallel Strand Cables [28]	40
Figure 4.4: Anchorage Components of Parallel Stay Cable [26]	40
Figure 4.5: Anchorage Block used for Stay Cable System [28]	41
Figure 4.6: Installation of the Parallel Strand Cable by the "Strand by Strand"	.41
Method [28]	41
Figure 4.7: Inclined Cable Subjected to a Chord Force T and the Weight Cable	
Figure 4.8: Material Definition Input Code	44
Figure 4.9: Section Definition Input Code	44
Figure 4.10: Pylon Section definition Input Code	45
Figure 4.11: 3D finite element modeling	45
Figure 4.12: Joint Coordinate definition Input Code	46
Figure 4.13: Beam Element definition Input Code	46
Figure 4.14: Deck Element definition Input Code	46
Figure 4.15: Transverse Links Element definition Input Code	47
Figure 4.16: Cable Element definition Input Code	47
Figure 4.17: Boundary Conditions for Cable-Stayed Bridges [28]	47
Figure 4.18: Pylon Boundary Conditions definition Input Code	48
Figure 4.19: Pylon-Tower Boundary Conditions definition Input Code	48
Figure 4.20: Form finding definition Input Code	49
Figure 4.21: Form finding Procedure [48]	49
Figure 4.22: Moment Due to Own Weight of Bridge	49
Figure 4.23: Input Code due to Artificial Load for Temporary Cables	50
Figure 5.1: Portal Frame Models (Left: SOFISTIK Model, Right: SAP20 Model)	
Figure 5.2: Dimensions and Properties of Models	51
Figure 5.3: Straining Action of Portal Frame	52

Figure 5.4: Dimensions and Properties for Cantilever with One Cable54
Figure 5.5: Vertical Force at Support and Initial Forces in Cable54
Figure 5.6: Straining Action and Displacement for Cantilever with One Cable .55
Figure 5.7: Dimensions and Properties for Cantilever with Two Cables56
Figure 5.8: Straining Action and Displacement for Cantilever with Two Cables
Figure 5.9: Dimensions and Properties for Cantilever with Three Cables58
Figure 5.10: Straining Action and Displacement for Cantilever with Three Cables
Figure 5.11: Straining Action for All Systems using Form finding61
Figure 5.12: Forces and Displacement for Active and Passive Cable62
Figure 5.13: Castigliano's Method
Figure 5.14: Virtual Work Method64
Figure 5.15: Straining Action for virtual Work Method
Figure 6.1: Deck Alternatives Cross Sections
Figure 6.2: Pylon Alternatives
Figure 6.3: Pylon Cross Sections
Figure 6.4: Case of loading due to live load71
Figure 6.5: Explanation of Aerodynamic Forces
Figure 6.6: Static Aerodynamic Force Coefficients for Single Box [36]75
Figure 6.7: Static Aerodynamic Force Coefficients for Double Box [3]76
Figure 6.8: Static Aerodynamic Force Coefficients [22]76
Figure 6.9: Cylinder Drag Coefficient as a Function of Re
Figure 7.1: Cable Force for Side Span 500m and Pylon Type 185
Figure 7.2: Cable Force for Side Span 500m and Pylon Type 286
Figure 7.3: cable force for Side Span 500m and Pylon Type 386
Figure 7.4: Cable Force for Side Span 600m and Pylon Type 1
Figure 7.5: Cable Force for Side Span 600m and Pylon Type 287
Figure 7.6: Cable Force for Side Span 600m and Pylon Type 388
Figure 7.7: Cable Force for Side Span 750m and Pylon Type 1
Figure 7.8: Cable Force for Side Span 750m and Pylon Type 289
Figure 7.9: Cable Force for Side Span 750m and Pylon Type 390
Figure 7.10: Comparison between different Side Span for Pylon Type190

Figure 7.11: Comparison between different Side Span for Pylon Type291
Figure 7.12: Comparison between different Side Span for Pylon Type391
Figure 7.13: Comparison between different Pylons for Side Span 500m92
Figure 7.14: Comparison between different Pylons for Side Span 600m93
Figure 7.15: Comparison between different Pylons for Side Span 750m93
Figure 7.16: Cable Force for different Side Span for Pylon Type194
Figure 7.17: Cable Force for different Side Span for Pylon Type294
Figure 7.18: Cable Force for different Side Span for Pylon Type395
Figure 7.19: Deck drift for different Pylons with Side Span 500m95
Figure 7.20: Deck drift for different Pylons with Side Span 600m96
Figure 7.21: Deck drift for different Pylons with Side Span 750m96
Figure 7.22: Deck drift for different Side Span with Pylon Type197
Figure 7.23: Deck drift for different Side Span with Pylon Type297
Figure 7.24: Deck drift for different Side Span with Pylon Type398
Figure 7.25: Cable Force for different Double Box during Operation99
Figure 7.26: Cable Force for different Double Box during Erection99
Figure 7.27: Deck Drift for different Double Box during Erection
Figure 7.28: Cable Force for Type4 and Type5 Pylon during Operation101
Figure 7.29: Cable Force for Type4 and Type5 Pylon during Erection101
Figure 7.30: Deck drift for Type4 and Type5 Pylon during Erection
Figure 7.31: Cable Force for Double Box 52m and Single Box during Operation 103
Figure 7.32: Cable Force for Double Box 52m and Single Box during Erection
Figure 7.33: Deck drift for Double Box 52m and Single Box during Erection 104
Figure 7.34: Temporary Cable Force for Single Box and Deck Fixation at 300m
Figure 7.35: temporary cable force for single box and deck fixation at 400m 105
Figure 7.36: Temporary Cable for Single Box and Deck Fixation at 500m 106
Figure 7.37: Temporary Cable comparison for Double Box during Erection 106
Figure 7.38: Drift of Deck with and without Temporary Cables
Figure 7.39: Pylon Proposals drift for Side Span 500m
Figure 9.1: Number of Strands due to Response of Side Span
Figure 9.2: Stresses in Cables