

Approval Sheet

Name of candidate: Saad Mahmoud Abdel Aziz Asal

Degree: Ph.D. for the Teacher's Preparation in Science (Inorganic

Chemistry)

Thesis Title: **Production and Characterization of Nanomaterials based on ZnO for Environmental and Biomedical Applications**

This Thesis has been approved by:

Approval

Prof. Dr. Mohamed Samir Abd-Elmoez

Prof. of Inorganic Chemistry Faculty of Education, Ain Shams University

Dr. Mona Mostafa Ali

Ass. Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

Dr. Hoda Saied Hafez

Ass. Prof. of Chemistry, Environmental Studies and Research Institute "ESRI", Sadat University.

Dr. Asmaa I. Nabil

Lecturer of Biochemistry, Faculty of Education, Ain Shams University

Dr. Marwa Mohamed Ibrahim

Lecturer of Physical Chemistry, Faculty of Education, Ain Shams University

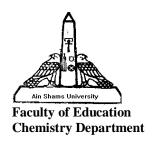
Prof. Dr. Mahmoud mashaly

Head of the Chemistry Department Faculty of Education Ain Shams University

"Production and Characterization of Nanomaterials Based on ZnO for Environmental and Biomedical Applications"

Thesis Submitted

By Saad Mahmoud Abdel Aziz Asal M.Sc., 2011


For

The Degree of
Ph.D. for the Teacher's Preparation in Science
(Inorganic Chemistry)

To

Chemistry Department Faculty of Education Ain Shams University Cairo, Egypt

2018

"Production and Characterization of Nanomaterials based on ZnO for Environmental and Biomedical

By

Saad Mahmoud Abdel Aziz Asal

M.Sc. (chemistry) 2011

Under the Supervision of:

Prof. Dr. Mohamed Samir Abd-Elmoez

Prof. of Inorganic Chemistry Faculty of Education, Ain Shams University

Dr. Mona Mostafa Ali

Ass. Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

Dr. Hoda Saied Hafez

Ass. Prof. of Chemistry, Environmental Studies and Research Institute "ESRI", Sadat University.

Dr. Asmaa I. Nabil

Lecturer of Biochemistry, Faculty of Education, Ain Shams University

Dr. Marwa Mohamed Ibrahim

Lecturer of Physical Chemistry, Faculty of Education, Ain Shams

University

Title Sheet

Name of candidate: Saad Mahmoud Abdel Aziz Asal

Date of Birth: 20/1/1977

Place of Birth: Cairo

Highest University Degree: M.Sc. (Chemistry) 2011

Name of University: Ain Shams

ACKNOLEDGEMENT

Thanks always are for God

I would like to thank Prof. Dr. Mohamed Samir Abd-Elmoez, Mona Saif, Dr. Asmaa Nabil, Dr. Marwa Mohamed Ibrahim (Chemistry Department, Faculty of Education Girls, Ain Shams University) and Dr. Hoda Hafez (Environmental Studies and Research Institute, Sadat University) for offering me the opportunity to carry out this interesting research work under their kind supervision and guidance. I am also indebted to my supervisors for suggesting the timely and interesting point of research, following up the progress.

Also, I want to thank **Prof. Dr. Mahmoud Mashaly** (Head of Chemistry Department, Faculty of Education, Ain-Shams University) for their continuous encouragement.

I am thankful to the support of all members of Chemistry laboratory in the Chemistry Department, Faculty of Education, Ain-Shams University.

ABSTRACT ii

ABSTRACT

Lanthanide doped zinc oxide nanoparticles have shown different application great potential in field such photoluminescence devise and However, energy. their applications for real wastewater remediation, disinfector agent and in vivo therapeutic agent against cancer cell (breast cancer and hepatocellular carcinoma (HepG-2) cell line) and their toxicity are largely unexplored.

In this study, we have produced low toxic nanomaterials based on Ln³⁺-ZnO and Ln(OH)₃: ZnO for different potential real wastewater remediation. applications such as water disinfection and in vitro and/or in vivo antitumor applications. x mol Ln³⁺ modified ZnO nano-particles (Ln= Sm³⁺, Eu³⁺ and Gd³⁺ ions; x = 0.008, 0.015, 0.025, 0.03 and 0.05) were synthesized by simple precipitation method. Also, 0.025 mol Ln(OH)₃: ZnO (Ln³⁺ = Gd³⁺ and Sm³⁺) were prepared with precipitation followed by post hydrothermal treatment at 200°C for different times (2, 5 and 10 h). The obtained nanomaterials were characterized using different advanced techniques; such as X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopic (EDX), UV-Visible diffuse reflectance, fluorescence (FL) spectroscopy. The obtained results shows that lanthanide ion improves the crystal, surface area, porosity, morphology, as well as the optical absorption and emission of UV

ABSTRACT iii

light properties of the prepared ZnO nano-semiconductor. Photocatalytic activity for the prepared nano-materials was determined using both, fluorescent probe and dye methods. Results showed that the 0.025 Gd³⁺-ZnO, 0.025 mol Sm(OH)₃:ZnO (2h) and 0.025 mol Gd(OH)₃:ZnO (10 h) are promising photocatalysts for different environmental applications. The high active 0.025 mol Gd³⁺- ZnO nanoparticles was successfully mineralized textile dye and real refractory wastewater samples under sunlight illumination using CPC photo-reactor. The prepared photocatalysts were also applied for water sample disinfection from E-coli under UVA illumination.

Moreover, the cytotoxicity of 0.015 mol Ln^{3+} -ZnO (Ln^{3+} = Eu^{3+} , Sm^{3+} and Gd^{3+}) were evaluated against Erlish Ascites carcinoma (EAC) cell line. The nanoparticle of Sm^{3+} -ZnO shows the highest activity where 95% of tumor cells died. Also, the high active Sm^{3+} -ZnO nanomaterials shows high antitumor activity against Hepatocellular carcinoma (HepG-2) human cell line. The obtained lethal dose ($\text{LD}_{50} = 250 \text{ mg/Kg bw}$) confirms that 0.015 mol Sm^{3+} -ZnO characterized with low toxicity. The in vivo antitumor results show that 0.015 mol Sm^{3+} -ZnO yields induces tumor-selective cell death without any major effect in the surrounding normal cell.

Also, the antitumor activities of the prepared nanomaterial were evaluated against Hepatocellular carcinoma (HepG-2) human cell line. The high Inhibitory activity against HepG-2 was

ABSTRACT iv

found in case of $0.025 \text{ mol Sm}(OH)_3$:ZnO hydrothermally treated for 5 h (13.2 µg/ml); making it a promising nontoxic nanomaterials in field of cancer therapy.

	CONTENTS	
Ackn	owledgment	i
Abstr	act	ii
List c	of Contents	V
List c	of Figures	xi
List c	of Tables	xviii
Abbro	eviations	XX
Aim (of the Work	xxii
	CHAPTER I	
	INTRODUCTION and LITERATURE REVIEW	
1.1	Nanotechnology and nano ZnO semiconductor	1
1.2	Basic properties of ZnO nano-semiconductor	2
1.3	Nano ZnO photocatalysis	7
1.4	Doping for modification of zinc oxide nanostructures	13
1.5	Lanthanide doped ZnO	17
1.6	Preparation methods for ZnO nanomaterial	20
1.7	Evaluation the photocatalytic activity of semiconductors	22
1.7.1	Stearic acid method	23
1.7.2	Dye method.	23
1.7.3	Contact angle method.	24
1.7.4	Fluorescent probe method	24
1.8	Applications of zinc oxide nanomaterials	25
1.8.1	ZnO nano-semiconductor for real wastewater remediation	25
and d	rinking water disinfection using solar energy	

LIST OF CONTENTS	V
1.8.1.1 Removal of organic wastes from wastewater	25
1.8.1.2 Water disinfection and antibacterial effect	27
1.8.2 ZnO and lanthanide doped ZnO nanoparticles: promising	20
for anticancer therapies	30
CHAPTER II	
EXPERIMENTAL TECHNIQUES AND METHODS	
2.1. Reagents and materials	33
2.2. Instrumentation	34
2.2.1. Photochemical reactor	34
2.2.1.1 UV Photochemical reactor	34
2.2.1.2 Compound parabolic collector (CPC) photoreactor	34
2.2.3. UV-Visible/diffuse reflectance instrumentation	36
2.2.4. Spectrofluorometer instrumentation	36
2.2.5. Chemical oxygen demand (COD) analysis	36
2.2.6. X-ray diffraction (XRD)	36
2.2.7. Surface area analysis	36
2.2.8. Transmission electron microscope	37
2.2.9. Centrifuge	37
2.2.10. Magnetic stirrer with hot plate	37
2.2.11. pH Meter	37
2.2.12. UV Light Meter	37
2.2.13. Lux Meter	37
2.2.14. Autoclave	37
2.2.15.Optical microscope	37

LIST OF CONTENTS	vi
2.3. Experimental methods	38
2.3.1. Photocatalyst preparation	38
2.3.1.1. Preparation of of Ln^{3+} -ZnO Nano-particles ($Ln = Sm^{3+}$,	
Eu ³⁺ and Gd ³⁺)	38
2.3.1.2. Preparation procedure of Ln(OH) ₃ -ZnO nanoparticles	
$(Ln = Sm^{3+} and Gd^{3+})$	38
2.3.2. Photocatalytic experiments	39
2.3.2.1. Determination of *OH radicals using fluorescent probe	
method	39
2.3.2.2. Dye method	39
2.4. Applications	40
2.4.1. Solar energy for textile dye and real wastewater treatment	
application using Compound parabolic collector (CBC)	
photoreactor	40
2.4.2. Photo water disinfection application	40
2.4.3. Antitumor and toxicity experiments (In vitro)	40
2.4.3.1 Antitumor test against Erlish Ascites carcinoma (EAC)	
cell line	40
2.4.3.2 Antitumor test against human Hepatocellular carcinoma	
(HepG-2) cell line	41
2.4.4 Toxicity (In vivo study)	42
2.4.5 Animal study and Therapeutic effect of Sm ³⁺ :ZnO on	
Ehrlish ascites carcinoma	43
2.4.5.1 Animals and experimental design	43
2.4.5.2. Tumor transplantation	43

LIST OF CONTENTS	vii
2.4.5.3. Experimental design	43
2.4.5.4. Tumor size	44
2.4.5.5. Histopathological study	44
2.5. Data analysis	45
2.5.1. The kinetic rate law	45
2.5.2. Mineralization efficiency	45
CHAPTER III	
Physicochemical and Photocatalytic Studies of Ln ³⁺ : ZnO for	
Water Disinfection, Wastewater Treatment and In-vitro/In-	
vivo Antitumor Applications	
Abstract	46
3. Results and discussion	47
3.1. Characterization of Ln ³⁺ doped ZnO nanoparticles	42
$(Ln=Sm^{3+}, Eu^{3+} \text{ and } Gd^{3+})$	4′
3.1.1. XRD	4
3.1.2. TEM	5
3.1.3. Surface area measurements	54
3.1.4. UV-Vis / DR	58
3.1.5. FL emission	63
3.2 Photocatalytic activity of Ln ³⁺ - ZnO nanoparticles	66
3.2.1 Evaluation of photocatalytic activity of Ln ³⁺ - ZnO	66

nanoparticles using fluorescent probe method
3.2.2 Evaluation of photocatalytic activity of Ln ³⁺ - ZnO
nanoparticles using dye method
3.3. Applications
3.3.1. Solar energy for textile dye and real wastewater treatment
application using Compound parabolic collector (CBC)
photoreactor
3.3.2. Photo water disinfection application
3.3.3. Antitumor experiments (In vitro study)
3.3.4. In vivo studies
3.3.4.1 Toxicity test (LD ₅₀ of 0.015 mol Sm ³⁺ -ZnO in mice)
3.3.4.2 Study the antitumor activity in vivo against solid tumor of
EAC in mice
3.3.4.2.1 Tumor size measurements.
3.3.4.2.2 Histopathological examination of tumor
CHAPTER IV
Hydrothermal preparation of 0.025 $Ln(OH)_3$: $ZnO(Ln^{3+} =$
Gd ³⁺ and Sm ³⁺) for photo water sterilizing and antitumor
applications
Abstract
4. Results and discussion
4.1 Physico-chemical properties of 0.025 Ln(OH) ₃ : ZnO (Ln ³⁺ =
Gd^{3+} and Sm^{3+}).

4.2. Photocatalytic properties of $0.025 \text{ Ln}(OH)_3$: ZnO $(Ln^{3+} =$	
Gd ³⁺ and Sm ³⁺)	108
4.3. Applications	112
4.3.1. Photo water sterilizing application	112
4.3.2. Antitumor experiments (In vitro study)	114
SUMMARY	118
REFERENCS	124
Published papers	
Arabic Summary	
Arabic abstract	

LIST OF FIGURES xi

LIST OF FIGURES

1.1	3
ZnO wurtzite crystal structure.	
1.2	4
Growth morphology of one dimension ZnO nanostructures	
1.3	8
Photo-induced formation mechanism of electron-hole pair in a	
semiconductor particle.	
2.1	34
The molecular structure of Ramazol Red RB-133.	
2.2	35
The Photograph of Compound parabolic collector (CBC)	
3.1	49
XRD pattern of pure ZnO and x mol sm ³⁺ -ZnO nanocrystals.	
3. 2	50
XRD pattern of pure ZnO and x mol Eu ³⁺ -ZnO nanocrystals.	
3.3	51
XRD pattern of pure ZnO and x mol Gd^{3+} -ZnO nanocrystals.	31
3.4	53
	33
TEM images of pure ZnO (a), lanthanides doped ZnO with different content, Sm ³⁺ (b-d), Eu ³⁺ (e-g), Gd ³⁺ (h-j).	
3.5	54
EDX images of pure ZnO (a), 0.025Gd ³⁺ -ZnO (b)	
3.6	56
Nitrogen adsorption–desorption isotherms of pure ZnO and Ln ³⁺ doped ZnO nanoparticles	
3.7	57