

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

STUDY OF CULLING OBJECTIVES IN MODERN DAIRY FARMS

BY

B7019

EHAB MOHAMED BASAL

B.Sc. Animal Production, 1993
Minufiya University

THESIS

Submitted In Partial Fulfilment Of The Requirement For The Degree Of Master Of Science

In

Agriculture Science Animal Production

Animal Production Department
Faculty Of Agriculture
Minufiya University
1999

APPROVAL SHEET

Title: Study of culling objectives in modern dairy farms.

Name: Ehab Mohamed Basal

This M. Sc. Thesis has been approved by:

Prof. Dr. Samier H. El Kaschab.
Prof. of Animal Husbandry,
Faculty of Agriculture, Menoufiya University.

Prof. Dr. Ashraf M. Soliman

Prof. of Animal Breeding,

Faculty of Agriculture, Zagazig University.

Prof. Dr. Moukhtar A. El-sayed

Prof. of Animal Breeding,

Faculty of Agriculture, Menoufiya University.

Prof. Dr. Said S. Omar....

Prof. of Animal Husbandry,

Faculty of Agriculture, Menoufiya University.

Date: /6/1999

SUPERVISORS

PROF. DR. M. A. EL- SAYIED

Prof. of Animal Breeding
Faculty of Agriculture, Menoufiya University.

PROF. DR. A. A. KANDIL

Prof. of Animal Husbandry

Faculty of Agriculture, Menoufiya University.

PROF. DR. S. S. OMAR S. Com a V

Prof. of Animal Husbandry
Faculty of Agriculture, Menoufiya University.

ACKNOWLEDGMENT

I wish to express my sincere appreciation to Prof. Dr. Moukhtar AbdelLatif, Professor of Animal Breeding, Faculty of Agriculture, Minufiya University, for suggesting the problems, continue encouragement and direct supervision in the planning of this thesis.

I would like to express my thanks to Prof. Dr. Abdel Halem Kandeel, Professor of Animal Husbandry, Faculty of Agriculture, Minufiya University, for Supervision, help and valuable advice.

I'm greatly indebted to Prof. Dr. Said Said Omar, Professor of Animal Husbandry, Faculty of Agriculture, Minufiya University for his science helps in this work, encouragement and valuable guidance.

I wish to express my sincere appreciation to Dr. Elham Ghoneim lecture of animal breeding, Faculty of Agriculture Minufiya University for her helping during the statistical analysis of data used in this thesis.

I wish to thank my father, mother, sisters and brother for their helpful and kind encouragement.

LIST OF CONTENTS

ACKNOWLEDGMENT	
LIST OF TABLES	
LIST OF ABBREVIATION	
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	2
2.1 Culling of dairy cows.	2
2.1.1 Annual culling rate.	2
2.1.2 A relative rate of culling reasons.	4
2.1.3 Culling in relation to seasons of calving.	5
2.1.4 Culling in relation to parities.	5
2.1.5 Time of culling in the final lactation.	9
2.2 Performance of culled and remained cows.	10
2.3 The stayability traits	11
2.3.1 Effect of age at first calving on stayability traits	12
2.3.2 Effect of first milk yield on stayability traits	12
2.3.3 Correlation and regression	13
2.3.3.1Correlation and regression coefficient between AFC and	13
stayability traits	
2.3.3.2Correlation and regression coefficient between FMY and	15
stayability traits	
2.3.4 Heritability estimates of stayability traits	17
3. MATERIAL AND METHODS	19
3.1 Data Collection.	19
3.2 Management.	19
3.3 Measurements and Statistical analysis.	20
3.3.1 Culling of dairy cows	20

3.3.2 Performance of culled and remained cows.	21
3.3.3 Stayability traits.	22
3.3.3.1 Non genetic factors affected on stayability traits.	22
3.3.3.1.1 Age at first calving.	22
3.3.3.1.2 First lactation milk yield.	22
3.3.4 Heritability estimate.	23
4. RESULTS AND DISCUSSION	25
4.1 Annual culling rate.	25
4.2 Relative rate of culling reasons.	28
4.3 Culling in relation to seasons.	31
4.4 Culling in relation to parity.	33
4.5 Time of culling in the final lactation.	36
4.6 Performance of culled and remained cows	3 9
4.7 Effect of age at first calving on stayability traits	43
4.8 Effect of first lactation milk yield on stayability traits	44
4.9 Correlation and regression coefficient for the relationship of	51
stayability traits with both of age at first calving and first	
milk yield.	
4.10 Heritability estimates	54
5. SUMMARY AND CONCLUSION	56
6. REFERENCES	64
7. ARABIC SUMMARY	

LIST OF TABLES

Table		
1	Annual culling rate for different breeds of dairy cattle at	3
	different years	
2	Percentage of culling reasons in different breeds of dairy cattle	4
3	Heritability estimates (h ²) of some stayability traits in different	18
	breeds of dairy cattle.	
4	Description of culling reasons codes	20
5	Frequency of calvings, number of culled cows, culling reasons	27
	and annul culling rate distributed by years of calving.	
6	Frequencies of culls and relative culling rate due to different	30
	reasons of culling represented as a percentage from the total	
	number of culled cows (%).	
7	Frequencies, percentages of culling reasons and relative culling	32
	rate distributed at different calving seasons.	
8	Frequencies, percentages of culling reasons and relative culling	35
	rate due to parities.	
9	Frequencies, percentages of culling reasons and relative culling	38
	rate by stage of lactation.	
10	Average of days from last calving to culling date due to different	38
	reasons of culling.	
11	Means \pm standard deviations (S.D.) and the differences between	41
	milk yield of both remained and culled Danish black and white	
	cattle at different lactations.	
12	Means ± standard deviations (S.D.) and the differences between	42
	milk yield of both remained and involuntary culled Danish black	
	and white cattle at different lactations.	
13	Means + standard deviations (S.D.) and the differences between	42

- milk yield of both remained and voluntary culled Danish black and white cattle at different lactations. 14 Least squares means ± and standard deviations (S.D.) as affected 45 by age at first calving and first lactation milk yield for longevity in Danish black and white cattle. 15 Least squares means \pm and standard deviations (S.D.) as affected 46 by age at first calving and first lactation milk yield for productive life in Danish black and white cattle. Least squares means \pm and standard deviations (S.D.) as affected 16 47 by age at first calving and first lactation milk yield for number of completed lactation in Danish black and white cattle. Least squares means ± and standard deviations (S.D.) as affected 17 48 by age at first calving and first lactation milk yield for total life milk yield in Danish black and white cattle. Analysis of variance for longevity and productive life in Danish 18 49 black and white cattle.
- Analysis of variance for number of completed lactation and total 50 life] milk yield in Danish black and white cattle.
- The Correlation and regressions coefficients for the relationship 53 of stayability traits with both of age at first calving and first milk yield in Danish black and white cattle.
- 21 Heritability estimates \pm Standard error for stayability traits in 55 Danish black and white cattle.

List of Abbreviations

Long. longevity

PL productive life

NCL number of completed lactation

TLMY total life milk yield

AFC age at first calving

FMY first milk yield

INTRODUCTION

Culling refers to the removal of live cows from herd. Generally culling reflects a negative quality of dairy cows.

Culling occur by two features:

FIRST feature is known as "voluntary culling". This means select cows depending on their milk production to improve their genetic potentiality of milk production.

SECOND feature is known as "involuntary culling". This refers to exclude cows by force due to health reasons such as reproductive disorders, udder problems, diseases etc

The sense of culling aspects and culling reasons represent importance of economic role in dairy farms. With these reasons in mind, this study has been carried out to investigate the following:

- 1- Study the culling of dairy cows by estimate the annual culling rate, relative rate of culling reasons, distribution of the culling seasons, parities and final stage of lactation.
- 2-Confirming or refusing the hypothesis theory which means that "animals of higher milk yield than a certain limit dictated by the adverse environment may be rejected earlier and consequently will have shorter longevity compared to those of medium or lower production"
- 3- Study the stayability traits measured as [longevity, productive life, number of complete lactation, total life milk production] by:
 - I. Study of some environmental factors affect stayability traits.
 - II. Heritability estimates for stayability traits to improve it.