PHYSICO-CHEMICAL AND TECHNOLOGICAL STUDIES ON SOME FOOD LEGUMES

BY KHALED ISMAIL ABD EL- SALAM AHMED

B.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1980M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Food Science and Technology)

Department of Food Science Faculty of Agriculture, Ain Shams University

Approval sheet

PHYSICO – CHEMICAL AND TECHNOLOGICAL STUDIES ON SOME FOOD LEGUMES

BY KHALED ISMAIL ABD EL- SALAM AHMED

B.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1980 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1999

This	s thesis for Ph.D. degree has been approved by:
Pro	f.Dr. Adel Zaki M.A.Badee Prof.of Food Science and Technology, Faculty of Agriculture Cairo University
Pro	f. Dr. Ramadan M.Mahmoud Prof. Emerities of Food Science and Technology, Faculty of Agriculture, Ain Shams University
Pro	f. Dr. Yehia A.Heikal Prof. Emerities of Food Science and Technology, Faculty of Agriculture, Ain Shams University
Pro	f. Dr. Mamdouh H.O.El- Kalyoubi Prof. of Food Science and Technology, Faculty of Agriculture Ain Shams University

Date of Examination 31/10/2005

PHYSICO – CHEMICAL AND TECHNOLOGICAL STUDIES ON SOME FOOD LEGUMES

BY KHALED ISMAIL ABD EL- SALAM AHMED

B.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1980M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1999

Under the supervision of:

Prof. Dr. Mamdouh H.O.El- Kalyoubi

Prof. of Food Science and Technology, Food Sc. Dep., Faculty of Agriculture, Ain Shams University (Principal supervisor)

Prof. Dr. Yehia A.Heikal

Prof. Emerities of Food Science and Technology, Food Sc. Dep., Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed M.M. Khalaf

Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Khaled Ismail Abd EL- Salam Ahmed. Physico – chemical and technological studies on some food legumes. Unpublished Ph.D. Dissertation, University of Ain Shams, Faculty of Agriculture, Department of Food Science, 2005.

Four food legumes (faba bean, cawpea, soy bean and lentil), from different growing locations obtained by the General Organization for Export and Import Control, Cairo, Egypt, were studied in comparison with the Egyptian cultivars. With respect to their physical and chemical characteristics, antinutritional factors content, supplementation raw and germinated legumes flour with wheat flour to prepare salt biscuit and application in meat products. On the other hand, the effect of soaking process at different temperatures (25, 50 and 80 °C) on hydration coefficient, swelling coefficient and hardness, was also studied. Significant variation in proximate composition in such legumes samples were found among the growing location. Soaking, germination and fermentation have affected on the legume samples content of antinutritional factors such as trypsin inhibitor, phytic acid and oligosaccharides. The higher significant effect was found in fermented legumes followed by germination and soaking treatments. Significant reduction in trypsin inhibitor content was found in all samples with increasing soaking, germination and fermentation time. The same reduction was observed in oligosaccharides content in samples, while phytic acid content was reduced after 3 days of germination process. Supplemented wheat flour samples at 20% and 30% with either raw or germinated faba bean, cowpea, soybean, lentil and their mixtures were used in biscuit making. The effect of such supplementations on the reheological properties (using farinograph and extensograph) of the resulting dough as well as the baking quality and nutritional properties of the produced biscuits were studied. It was found that the use of legume flours at 20% improved the reheological properties of the dough. Also,

supplementation with legume flours has improved the baking quality and nutritional properties of produced biscuits, especially when germinated legume flours were used. Sensory evaluation proved that the use of supplemented wheat flour in biscuit formula gave the acceptable scores for most sensory attributes, except for that samples supplemented with lentil flours. Using of raw and germinated legumes at 30% for all legume samples and 40% for only lentil in preparation of beef burger improved the water holding capacity, plasticity, cooking yield, hardness and sensory properties of the produced samples. it could be noticed that, beef burger samples prepared with addition of the same levels of legume flours showed enhanced organoleptic acceptability.

Key words: Faba bean – Cowpea - Soy bean – Lentil – Physical and Chemical Properties - Soaking- Germination – Fermentation – Antinutritional Factors – Sorption isotherm's.

ACKNOWLEDGEMENT

All praises and thanks are due to **ALLAH**, who blessed me with kind professors and colleagues, and gave me the support to present this thesis.

I would like to express my sincere appreciation and deepest gratitude to **Prof. Dr. Mamdouh H.O.El- Kalyoubi**, Professor of Food Science and Technology, Faculty of Agriculture, Ain Shams University for his close supervision, great helps, valuable suggestion and continuous encouragement during the whole period of this study.

Deepest thanks and sincere appreciation to **Prof. Dr. Yehia A.Heikal**, Professor of Food Science and Technology, Faculty of Agriculture, Ain Shams University for his guidance, constructive criticism and every possible help he kindly offered throughout the course of this work.

I wish to express my deepest sincere appreciation to **Prof. Dr. Mohamed M.M. Khalaf**, Professor of Food Science and Technology, Faculty of Agriculture, Ain Shams University for supervising this work, attention and efforts he mad through the course of the implementation of this thesis.

Thanks due to all the staff members and colleagues in the Food Science and Technology Department, Faculty of Agriculture, Ain Shams University for giving all the facilities that made this work possible.

I would like to offer my gratitude to the General Organization for Export and Import Control, for the every kind help and encouragement.

Thanks also should be sent to *Academy of Scientific Research* to its fund help and facilities offered to make this work possible.

Also, I would like to express my deep thanks for **Prof. Dr. Herbert Kunzek and Dr. Dieter Glogna.** Dept. of Food Functionality,

Institute of Food Technology at Berlin University of Technology for the facilities provided through the HPLC-analysis of the oligosaccharides.

In this respect I can not forget my family for their continuous help and support through this work.

LIST OF CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITRETURE	6
2.1. Thermal processing and water activity of food legumes	6
2.2. Food legumes characteristics as affected by technological	
processes	8
2.2.1. Soaking	8
2.2.2. Germination	10
2.2.3. Fermentation	15
2.3. Chemical proximate of some food legumes	17
2.4. Effect of processing on the antinutritional factors in food	
legumes	19
2.5. Nutritional evaluation of legumes blending in food	
products	24
3. MATERIALS AND METHODS	36
3.1. Materials	36
3.1.1. Food legume seeds	36
3.1.2. Raw materials used in biscuits	37
3.1.3. Raw material used in beef burger	37
3.1.4. Bacterial strains	38
3.1.5. Media	38
3.1.6. Lactobacilli agar (MRS-agar)	39
3.1.7. Lactobacilli fermentation medium	39
3.2. Technological and biological treatments	39
3.2.1. Soaking	39
3.2.2. Germination	40
3.2.3. Fermentation	40
3.2.4. Preparation of defatted soy flour	40
3.2.5 Hard salted bisquits	40

3.2.6. Beef burger	41
3.3. Methods of Analysis	43
3.3.1. Physical properties of legume seeds, different biscuit	43
samples and beef burger samples	
3.3.1.1. Weight and volume of 1000-seeds	43
3.3.1.2. Seed dimensions	43
3.3.1.3. Hardness of legume seeds, biscuit and beef burger	
samples	45
3.3.1.4. Hydration coefficient	45
3.3.1.5. Swelling coefficient	45
3.3.1.6. Water activity	45
3.3.1.7. Rheological analysis	46
3.3.1.7.1. Rheological properties of dough	46
3.3.1.7.1.1. Farinograph test	46
3.3.1.7.1.2. Extensograph test	47
3.3.1.8. Baked biscuits analysis	49
3.3.1.9. Beef burgers analysis	49
3.3.1.9.1. Cooking yield	49
3.3.1.9.2. Cooking loss	49
3.3.1.9.3. Shrinkage	49
3.3.1.9.4. Water holding capacity (WHC)	50
3.3.2. Chemical analysis	50
3.3.2.1. Moisture content	50
3.3.2.2. Total nitrogen	50
3.3.2.3. Crude fat	50
3.3.2.4. Ash content	50
3. 3.2.5. Total Carbohydrates	50
3.3.2.6. Amino acid	51
3. 3.2.7. Iron content	52

3. 3.2.8. Antinutritional Factors	52
3. 3.2.8.1. Trypsin inhibitor activity (TIA) assay	52
3. 3.2.8.2. Phytic acid assay	53
3.3.2.8.3. Determination of sugars using High Pressure	
Liquid Chromatography (HPLC)	53
3.4. Sensory evaluation	55
3.4.1. Sensory evaluation of biscuit samples	55
3.4.2. Sensory evaluation of beef burger samples	55
3.5. Statistical analysis	56
4. RESULTS AND DISCUSSION	57
4.1. Physico-Chemical Properties of the Investigated Egyptian	
and Imported Food Legume Seeds	57
4.2. Moisture sorption characteristic of tested food legumes	63
4.2.1. Equilibrium moisture content of tested legumes	65
4.2.2. Kinetic of moisture sorption	80
4.2.3. Sorption isotherm curves of tested legumes	88
4.2.4. Mathematical description of sorption isotherms	94
4.2.4.1.The Guggenheim-Anderson-de Boer (GAB) equation	94
4.2.4.2. Henderson equation	96
4.2.4.3. Halsey equation	96
4.2.4.4. Chung-Pfost equation	96
4.2.4.5. Smith equation	97
4.2.4.6. Application of G.A.B. equation	97
4.2.4.7. Application of Henderson, Chung-Pfost, Halsey and	101
Smith equations	101
4.2.5. Heat of sorption	107
4.2.5.1. Effect of equilibrium moisture content on hardness	
of legume seeds	109

4.3. Food legume quality as affected by soaking treatment	118
4.3.1. Hydration	118
4.3.2. Swelling	126
4.3.3. Hardness	138
4.4. Effect of processing on some antinutritional factors	151
4.4.1. Trypsin inhibitor	152
4.4.2. Phytic acid	160
4.4.3. Oligosaccharides	168
4.4.3.1. Sugars content of raw legume samples	168
4.4.3.2. Effect of technological treatments on sugars profile of	
legume seeds	175
4.4.3.2.1. Effect of technological treatments on sugar content	
of faba bean	175
4.4.3.2.2. Effect of technological treatments on sugar content	182
of cowpea	102
4.4.3.2.3 Effect of technological treatments on sugar content	187
of soybean	107
4.4.3.2.4. Effect of technological treatments on sugar content	
of lentil	195
4.5. Application of Legume Seed Flours on Food Processing	203
4.5.1. Biscuits	203
4.5.1.1. Chemical composition of biscuits	203
4.5.1.2. Sensory evaluation of biscuits	208
4.5.1.3. Baking quality characteristics of biscuit samples	218
4.5.1.4. Reheological properties of biscuit dough's	218
4.5.2. Beef Burger	235
4.5.2.1. Water holding capacity (WHC)	235
4.5.2.2. Plasticity	238
4.5.2.3. Shrinkage	239
4.5.2.4. Cooking yield	243

4.5.2.5. Cooking loss	244
4.5.2.6. Hardness	244
4.5.2.7. Organoleptic evaluation.	248
4.5.2.7.1. Color	248
4.5.2.7.2. Taste	251
4.5.2.7.3. Aroma	251
4.5.2.7.4. Tenderness	252
4.5.2.7.5. Juiciness	253
4.5.2.7.6. Overall acceptability	253
5-SUMMARY	255
6-REFERENCES	264
7-APPENDEX	294
8-ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	Mean values of Production and Imported amounts (tons) of Faba bean, Cowpea, Soybean and Lentil during 2000 – 2004	2
2	Composite different ratio of wheat flour substitutes with different amounts of prepared legumes flour for Biscuits dough's	
	dough	42
3	Composite different ratio of beef meat extended with	
	different legumes flour for beef burger samples	44
4	The saturated salt solutions and their relative Humidity	46
5	Mean values of dimensions, weight and hardness of the Egyptian and imported (faba bean, cowpea, soybean and	
	lentil) legume seeds	58
6	Proximate chemical composition of some raw Egyptian	36
U	and imported food legumes	60
7	Amino acid composition (%) of some raw Egyptian and	00
,	imported food legumes	62
8	Amino acid composition of some raw and germinated	02
Ü	imported food legumes	64
9	Equilibrium moisture content of Egyptian and British faba	0.
	bean at different water activity levels and	
	temperatures	66
10	Equilibrium moisture content of Egyptian and Burma	
	cowpea at different water activity levels and	
	temperatures	67
11	Equilibrium moisture content of Egyptian and Argentina	
	soybean at different water activity levels and	
	temperatures	68

12	Equilibrium moisture content of Egyptian and Turkey	
	lentil at different water activity levels and temperatures	69
13	Rate of moisture desorption and absorption of Egyptian	
	and imported faba bean (K-values) during sorption	
	experiment (g H ₂ O / g DM.d ⁻¹)	82
14	Rate of moisture desorption and absorption of Egyptian	
	and imported cowpea (K-values) during sorption	
	experiment (g H ₂ O / g DM.d ⁻¹)	83
15	Rate of moisture desorption and absorption of Egyptian	
	and imported soybean (K-values) during sorption	
	experiment (g H ₂ O / g DM.d ⁻¹)	84
16	Rate of moisture desorption and absorption of Egyptian	
	and imported lentil (K-values) during sorption experiment	
	$(g H_2O / g DM.d^{-1})$	85
17	Activation energy values for moisture sorption of	
	different legume samples at different water activity	
	values	87
18	Values of constant parameters of G.A.B equation for the	
	tested legumes	98
19	Calculated Parameters of equilibrium moisture content	
	evaluated in some food legumes by different isotherm	
	equations	102
20	Excess binding energy for moisture sorption (qst) as	
	(Kcal / g mole H ₂ O) of Egyptian and imported	
	investigated legumes	106
21	Effect of equilibrium relative humidity on hardness (kgf)	
	of some legume at 6°C	110
22	Effect of equilibrium relative humidity on hardness (kgf)	
	of some legume at 25°C	111

23	Effect of equilibrium relative humidity on hardness (kgf)	112
	of some legume at 40°C	
24	Hydration coefficient values (%) of Egyptian and	
	imported faba bean as affected by soaking process at	
	different temperatures	119
25	Hydration coefficient values (%) of Egyptian and	
	imported cowpea as affected by soaking process at	
	different temperatures	122
26	Hydration coefficient values (%) of Egyptian and	
	imported soybean as affected by soaking process at	
	different temperatures	124
27	Hydration coefficient values (%) of Egyptian and	
	imported lentil as affected by soaking process at different	
	temperatures	127
28	Swelling coefficient values (%) of Egyptian and imported	
	faba bean as affected by soaking process at different	
	temperatures	129
29	Swelling coefficient values (%) of Egyptian and imported	
	cowpea as affected by soaking process at different	
	temperatures	132
30	Swelling coefficient values (%) of Egyptian and imported	
	soybean as affected by soaking process at different	
	temperatures	134
31	Swelling coefficient values (%) of Egyptian and imported	
	lentil as affected by soaking process at different	
	temperatures	136
32	Effect of soaking on the hardness (kgf) of Egyptian and	
	imported faba bean at different temperatures	139
33	Effect of soaking on the hardness (kgf) of Egyptian and	
	imported cowpea at different temperatures	141