An in vivo comparative study between the bactericidal effect of photodynamic therapy using Diode Laser and Non-Coherent light in young permanent teeth

Thesis

Submitted To

Faculty of Dentistry

Ain Shams University

In Partial Fulfillment of the Requirements for

Master's Degree

In Pediatric Dentistry

By

Dalia Fakih El Bedeawi

B.D.S, Cairo University (1998)

Faculty of Dentistry
Ain Shams University

2007

Supervisors

Dr. Nadia Ezz El Din Metwalli

Associate Professor of Pediatric Dentistry
&
Dental Public Health
Faculty of Dentistry
Ain Shams University

Dr. Amr M. Abdel Aziz

Associate Professor of Pediatric Dentistry &

Dental Public Health
Faculty of Dentistry
Ain Shams University

Dr. Ali M. El Housani Saafan

Lecturer of Medical &
Biological applications of Laser
National Institute of Laser Enhanced Science
Cairo University

Acknowledgement

I would like to express my warmest and sincere thanks to **Dr. Nadia**Ezz El-Din Metwalli Associate Professor of pediatric Dentistry,

Faculty of Dentistry, Ain Shams University for her supervision,

guidance, valuable advice, helpful directions and continuous interest

throughout this work.

I wish to offer my deep appreciation and gratitude to **Dr. Amr M. Abdel Aziz** Associate Professor of Pediatric Dentistry, Faculty of Dentistry, Ain Shams University for his kind support, keen interest, and encouragement.

No words can express how much I am grateful and thankful to **Dr. Ali El Housani Saafan** Lecturer of Medical & Biological Applications of Laser, National Institute of Laser Enhanced Science, Cairo University for his tremendous efforts, generous scientific giving, and unlimited co-operation to accomplish this work.

My thanks is due to **Dr. Mahmoud Essam Hatem** Professor and Head of Microbiology Department, Faculty of Veterinary Medicine, Cairo University for his real support, valuable time and endless help.

Special thanks and gratitude to the soul of **Dr. Ibrahim Abdel Rahman** Professor and Head of Oral Pathology Department,
Faculty of Dentistry, Ain Shams University for his kind support and his being a godfather to me.

Dedication

To my great parents to whom I am in debt everything. They were always supportive and giving for many long years.

To my loving husband who sacrificed a lot to push me forth.

I owe him endless thanks and gratitude.

To my **little son** who was denied many things he deserves during the accomplishment of this work.

To anyone one who helped me either by a true advice or a valuable effort.

Contents

Page List of Tables.....VI List of Figures.....VII Introduction..... . 1 Review of Literature 4 Aim the of Materials and Methods 43 Results.... . 55 Discussion..... . 74

Summary	
84	
Conclusions	
86	
Recommendations	
87	
References	
88	
List of	
abbreviations	
Arabic Summary	

List of Tables

Table no.	Title
Page	
(1)	Distribution of groups according to 45
	type of exposure, time of exposure&
	total power output
(2)	Distribution of groups
55	
(3)	Change difference of cfu in group I
57	
(4)	Change difference of cfu in group II
59	
(5)	Change difference of cfu in group III
61	
(6)	Change difference of cfu in group IV
63	
(7)	Change difference of cfu in group V
65	
(8)	Change difference of cfu in group VI
67	

(9)	Descriptive numerical data of
69	
	change difference of cfu in all groups
(10)	P value of different groups
69	

List of Figures

Figure no. Page	Title
(1)	Mandibular first permanent molar after isolation with a rubber dam 47

(3) Mandibular first permanent molar after cavity preparation 48 (4) Mandibular first permanent molar after application of MB 48 (5) Diode laser application 49 (6) Non coherent light application 49 (7) A plate containing MSA before culturing 52 the sample (8) A microcentrifuge tube containing 1 ml of RTF (9) The incubator inside which the samples are kept for 24hrs to enhance colony development (10) S. mutans colony forming units cultured on MSA	(2)		Diode laser system used 47
application of MB 48 (5) Diode laser application 49 (6) Non coherent light application 49 (7) A plate containing MSA before culturing 52 the sample (8) A microcentrifuge tube containing 1 ml of RTF (9) The incubator inside which the samples are kept for 24hrs to enhance colony development (10) S. mutans colony forming units cultured on 53	(3)		preparation
(6) Non coherent light application 49 (7) A plate containing MSA before culturing 52 the sample (8) A microcentrifuge tube containing 1 ml of RTF (9) The incubator inside which the samples are kept for 24hrs to enhance colony development (10) S. mutans colony forming units cultured on 53	(4)		application of MB
(7) A plate containing MSA before culturing 52 the sample (8) A microcentrifuge tube containing 1 ml of RTF (9) The incubator inside which the samples are kept for 24hrs to enhance colony development (10) S. mutans colony forming units cultured on 53	(5)		
the sample A microcentrifuge tube containing 1 ml of RTF The incubator inside which the samples are kept for 24hrs to enhance colony development S. mutans colony forming units cultured on S. mutans colony forming units cultured on	(6)		<u> </u>
RTF (9) The incubator inside which the samples are kept for 24hrs to enhance colony development (10) S. mutans colony forming units cultured on 53	(7)		52
kept for 24hrs to enhance colony development S. mutans colony forming units cultured on 53	(8)	52	
53	(9)	53	•
MSA			S. mutans colony forming units cultured on
			MSA

Figure no Page	o. Title
(11) 57	A sample of group I
(12) 59	A sample of group II
(13) 61	A sample of group III
(14) 63	A sample of group IV
(15) 65	A sample of group V
(16) 67	A sample of group VI
(17) 70	Mean change difference of cfu in groups I, II & III
(18) 71	Mean change difference of cfu in groups IV, V&IV
(19) 72	Mean change difference of cfu in all groups
(20) 73	Mean change difference of cfu in all groups

Introduction

Introduction

Dental caries is an infectious microbiological disease of the teeth that results in localized dissolution and destruction of the calcified tissues. It is essential to understand that cavitations in teeth (destruction of the tooth surface, creating a cavity) are signs of bacterial infection. In clinical practice, it is possible to lose sight of this fact and focus entirely on the restoration of the lesions, thus failing to treat the underlying cause of the disease (i.e. the infection of the tooth from odontopathic bacteria) and this will allow the disease to continue.(1)

While the role of bacterial activity in the genesis of carious lesions is well defined, one group of bacteria *Streptococcus mutans* (*S. mutans*) which consists of eight serotypes, has been associated with the onset of caries. (1)

The atraumatic restorative technique (ART) uses only handinstruments to remove dental caries, after which the cavity preparation is usually restored with a glass ionomer cement.(2)

However, there was no attempt to kill the bacteria without dentine removal. It would be clinically advantageous to maintain partially demineralized dentine if the bacteria could be eliminated. (3)

An alternative technique to traditional antimicrobial chemotherapy is the photodynamic therapy (PDT) that involves the use of light to kill the cells that are previously treated with a photosensitizing agent. (4)

PDT can be carried out by laser as well as a variety of non coherent broad band light sources. The important requirement for any photodynamic therapy light source is that its emission spectrum includes the activating wavelength for the photosensitizer being used.(5)

Diode laser is a semiconductor chip that works like an electrical diode. The diode laser operates at wavelength (650-900 nm). Diode laser has many advantages as being portable, light weight, reliable and cheap in price. (6)

The development of non coherent light sources, e.g. arc lamp, incandescent bulbs and fluorescent tubes, makes photodynamic therapy more practical. Additional advantages of these sources include the capability for exposing relatively large treatment fields.(7)

Recent studies have shown that a number of oral bacteria, including the cariogenic bacteria are susceptible to killing by light after sensitization with an appropriate photosensitizer.(8)

Methylene blue (MB) photosensitizer was applied to cutaneous microbial species (*Streptococcus pyogenes*, *Staphylococcus epidermidis*, and *Staphylococcus aureus*). The photodynamic inactivation was shown to be dose dependant when exposed to continuous wave radiation of visible light. This method may represent a useful alternative treatment to conventional antimicrobial treatment.(9)

Review Of Literature