Laser Assisted Zona Thinning Versus the Conventional Mechanical Method for Intracytoplasmic Sperm Injection in ICSI Programs

"A Randomized Controlled Trial"

Thesis

Submitted for Partial Fulfillment of the MD *in Obstetrics and Gynecology*

Bv

Haitham Fathy Mohammed Gad

M.B.B.Ch (sw), M.SC (sw).
Faculty of Medicine
Ain shams University
Assistant lecturer in Ain Shams Maternity hospital

Under Supervision of

Prof. Dr. Amro Salah Eldin Elhoussieny

Professor of Obstetrics & Faculty of Medicine Faculty of Medicine - Ain Shams University

Dr. Mohammed El Mandooh Mohammed Ibrahim

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine- Ain Shams University

Dr. Ahmed Mohammed Bahaa Eldin Ahmed

Lecturer in Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University Cairo 2015

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof.** Amro Elhusseiny Professor of Obstetrics & Gynecology, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Mohammed el mandouh**, Professor of Obstetrics & Gynecology Ain Shams University, for his continuous directions and support throughout the whole work.

I would like to express my deepest gratitude and sincere thanks to **Dr. Ahmed Bahaa**, lecture of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University for suggesting and planning this work, his instructive supervision, continuous guidance, unlimited help and unfailing support, valuable instructions throughout the work and final revision of the manuscript.

I am also grateful to **Dr. Ahmed El Damen**, embryology lab director for his help in performing this work.

Finally I owe too much for my family, my wife and my daughter for continuous encouragement and support all through this work and my life.

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	V
Introduction and Aim of the Work	1
* Chapter (1) Intracytoplasmic Sperm Injection (ICSI)	5
* Chapter (2) Assessment of Oocyte and Embryo Quality	17
* Chapter (3) Diode Laser in Assisted Reprproduction	47
Patients and Methods	72
Results	81
Discussion	97
Summary	103
Conculsion and Recommendation	105
Reference	106
Arabic Summary	

List of Abbreviations

AMA : Advanced maternal age.Arf : Argon fluoride gas laser.

ART : Assisted reproductive technologies

ATP : Adenosine triphosphatase. BcB : Brilliant cresyl blue stain.

BMI : Body mass index. C ICSI : Conventional ICSI.

COC : Cumulus oocyte complex.

COH : Controlled ovarian hyper stimulation.

D3EQ : Day 3 embryo quality.

DFC : Dense Fibrillar Component.

D-OPU : Day of ovum pick up.

E2 : Estradiol.

ER: YAG : Erbium yttrium aluminium garnet laser.

FC : Fibrillar Center.

FP : Fragmentation pattern.

FSH : Follicle stimulating hormone.

G6PDH : Glucose 6 phosphate dehyrogenase.

GC : Granular Component.

GnRH-a : Gonadotrophin- releasing hormone agonist.

GV : Germinal vesicle.

HCG : Human chorionic gonadotrophin.HMG : Human menopausal gonadotrophins.

HO- YSGG: Holmium yttrium Scandian gallium garnet.

ICSI : Intracytoplasmic sperm injection.

IGF : Insulin like growth factor.

IGF B : Insulin growth factor binding protein.
 InGaAsp : Indium gallium arsenic phophorus.
 INVERT : In Vitro Fortilization Embryo Transfer

IVF-ET : In Vitro Fertilization - Embryo Transfer.

KrF : Lrypton fluoride.

LA ICSI : laser assisted intracytoplasmic sperm

injection.

List of Abbreviations (Cont.)

LH : Leutinizing hormone

MFD : Multiple follicular developments. ND: YAG : Neodymium yttrium aluminium.

NICE: National Institute Health and Clinical

Excellence.

NPBs : Nucleolar precursor bodies

OI : Ovulation induction.

OR : Odds ratio.
PB : Polar body.

PGD : Pregentic diagnosis.PVP : PolyvinylpyrrolidonePZD : Partial zonal dissection

SE : Standard error

SUZI : Sub zonal insemination

TSH : Thyroid stimulating hormone. WHO : World Health Organization.

Xecl : Xenon chloride .ZP : Zona pellucida.Z-Score : Zygote scoring.

List of tables

Table	Title	Page
1	Oocyte maturity grading system	25
2	Mean age in the two study groups	82
3	Number of retrieved, injected, fertilized, and cleaved oocytes, and number of produced blastocyts in the two study groups	83
4	Outcome measures in the two study groups	83
5	Comparison of the outcome measures associated with laser-assisted ICSI or conventional ICSI in patients aged <35 or ≥35 years	84
6	Comparison of the biochemical pregnancy rate associated with laser-assisted ICSI or conventional ICSI in patients aged <35 or ≥35 years	85
7	Odds ratio, relative risk, and number needed to treat for the occurrence of positive biochemical pregnancy with the laser-assisted ICSI group referenced to the conventional ICSI group	87
8	Multivariable binary logistic regression analysis for the relation between the fertilization technique and occurrence of pregnancy as adjusted for the patient's age	91
9	Comparison of the biochemical pregnancy rate associated with laser-assisted ICSI or conventional ICSI in patients aged <35 or ≥35 years	93

List of tables (Cont.)

Table	Title	Page
10	Odds ratio, relative risk, and number	95
	needed to treat for the occurrence of	
	positive biochemical pregnancy with the	
	laser-assisted ICSI group referenced to	
	the conventional ICSI group	
11	Odds ratio, relative risk, and number	95
	needed to treat for the occurrence of	
	positive biochemical pregnancy with the	
	laser-assisted ICSI group referenced to	
	the conventional ICSI group	

List of figures

Fig. Title Page		
Fig.		Page
1	Trans-vaginal sonogram showing	7
	developing follicles in the ovary during	
	superovulation	
2	Diagrammatic Fig.showing trans -vaginal	8
	oocyte retrieval	
3	2 ^{ry} oocyte with formation of first polar body	8
4	Diagrammatic Fig.for oocyte injection	9
5	True microscopic image for oocyte injection	9
6	Injection of the oocyte	13
7	Fertilized oocyte and early dividing embryo	14
	in 2 cell stage	
8	Diagrammatic figures for embryo transfer	15
	showing replacement cannula gently	
	inserted into the uterine cavity and the	
	embryos expelled	
9	Events of nuclear maturation, exemplified	19
	by sea urchin oocytes	
10	(a) Normal fertilization, even-sized nuclei	28
	correctly located in the oocyte with aligned	
	nucleoli. (b) Nuclei not aligned by 18 hours	
	after insemination; abnormal. (c) Nuclei of	
	distinctly different sizes; abnormal. (d)	
	Nuclei incorrectly positioned within the	
	oocyte and small	
11	Nucleolar precursor body (NPB) pattern	32
12	Z1 and Z2 zygotes. (a-d) Z1: equal numbers	33
	of equal-sized nucleoli aligned at the	
	pronuclear junction. (e and f) Z2: equal	
	numbers of equal-sized nucleoli still	
	scattered in the nuclei	
	Statistica III die Havier	

List of figures (Cont.)

Fig.	Title	Page
13	Z3 zygotes. (a) Many small pinpoint	34
	nucleoli. (b-e) Inequality in size or number	
	or alignment of nucleoli between the two	
	nuclei. (f) many small scattered pinpoint	
	nucleoli	
14	Ideal features shared by pronucleate oocytes	36
	that have high viability	
15	Cleaving embryo scoring	38
16	The blastocyst grading system. ICM, inner	44
	cell mass. Modified from Gardner and	
	Schoolcraft	
17	Day 5 human blastocysts	44
18	Ideal features of embryos scored at 25-26 h,	45
	42-44 h, and 66-68 h postinsemination/ICSI	
19	Timeline for optimal blastocyst	46
	development	
20	Day 2 embryo after laser-assisted total	71
	hatching	
21	Schematic representation of laser-assisted	77
- 22	ICSI procedure	70
22	G210 invicell Incubator	78
23	Box plot showing the number of retrieved,	86
	injected, fertilized, and cleaved oocytes, as	
	well as the number of produced blastocyts in	
	the two study groups. Box represents the	
	range from the first to third quartile	
24	(interquartile range)	90
24	Box plot showing the fertilization, cleavage,	89
	and blastocyst formation rates in the two	
	study groups	

List of figures (Cont.)

Fig.	Title	Page
25	Biochemical pregnancy rate in the two study groups	90
26	Box plot showing the fertilization, cleavage, and blastocyst formation rates in the two study groups as stratified for the age category (<35 or ≥35 years)	92
27	Biochemical pregnancy rate in the two study groups as stratified for the age category (<35 or ≥35 years)	94

Introduction

The birth of Louise Brown after in vitro fertilization in 1978 was a wonderful step forward, but the field has been dogged by a number of difficulties. The success of assisted reproductive technology depends upon the intricate relationship between the transferred embryo and the endometrium (*Bider et al.*, 1997).

Intracytoplasmic sperm injection (ICSI), a method of in vitro fertilization (IVF) in which a single sperm is introduced directly to the cytoplasm of a mature oocyte. ICSI has become a routine method of fertilization if male factor infertility is evident and the treatment is also used in instance of non male factor infertility (*Ebner T*, 2004).

Since its inception, ICSI has been performed by the mechanical penetration of the zona pellucid and the oolemma by a glass needle through which the sperm is injected into the cytoplasm. This technique has several drawbacks. These include mechanical damage to cytoplasmic membrane, the cytoskeleton and the meiotic spindle that occurs during membrane penetration and sperm deposition (*Ebner T*, 2001).

Although the effectiveness of this procedure has been clearly demonstrated it's associated with oocyte degeneration rates 5% to 19%. The reasons for this degeneration are unclear. Observation of ZP of oocyte by scanning revealed no zona fragmentation during procedure and the injection hole closes immediately after the needle is withdrawn, with injection site being nearly undetectable 15 minutes later. (*Schwartz p et al, 1996*).

Introduction and Aim of the Work

In fact, oocyte degeneration and abnormal fertilization constitute the principle reasons for the cancellation of assisted reproductive technique cycles. Additionally, some oocytes are very fragile and the zona pellucida (ZP) can be very resistant to penetration, resulting in sudden breakage of membrane during ICSI (*Liu J, 1995*).

To overcome this problem, several groups have developed laser assisted ICSI technique. Lasers have already been used as convenient and safe tools in assisted hatching and pre implantation genetic diagnosis (*Rienzi et al, 2001*).

Laser assisted ICSI (LA - ICSI) featuring micro opening or drilling of the ZP prior to ICSI, allows the insertion of the sperm injection needle with less distortion of the oocyte and may therefore be less traumatic (*Rienzi et al*, 2001) which will reduce the degeneration rate of human oocytes and increase embryo development rates in patients who had experienced prior ICSI failure caused by poor oocytes survival. (*Demirol A*, 2006).

Several groups have reported similar results in selected patients with histories of poor ICSI outcomes for which only limited numbers of oocytes were available (*Abdlmassih S*, 2002). In addition, when used to overcome fertilization problems, laser assisted ZP thinning prior to routine ICSI both improved oocytes survival and increase the hatching rate in vitro (*Moser M*, 2004).

First reported a pregnancy using laser-assisted ICSI in a couple with four previous conventional ICSI failures and poor oocyte survival (*Rienzi et al, 2001*). They noted minimal oocyte deformation with the use of laser-assisted ICSI, and survival of 8 of the 13 metaphase II oocytes retrieved and injected. Two small randomized studies of

Introduction and Aim of the Work

patients with a previous history of high rates of oocyte degeneration (>20%) following ICSI, or who produced oocytes with fragile oolemmas, yielded dramatic statistically significant reductions in oocyte degeneration rates (*Abdlmassih S, 2002*) (*Rienzi et al, 2001*). 0.5% versus 16% and 2% versus 14%, respectively) and improved embryo quality with the use of laser-assisted ICSI compared to conventional ICSI (**Yanagida K et al 1999**).

The objective of this study was to evaluate the benefits of laser-assisted ICSI among patients undergoing in vitro fertilization with ICSI. We describe results of the randomized trial examining laser-assisted ICSI including comparisons of oocyte fertilization and degeneration rates and blastocyst formation rates and biochemical pregnancy rate.

Aim of the Work

This study carried out in infertile women who subjected to treat therir infertility by ICSI comparing laser assisted zona thinning prior to ICSI versus conventional ICSI with following outcome:

1ry outcome: successful chemical pregnancy by qualitative B-HCG test.

2nd outcome: successful fertilization, cleavage, blastocyst formation, decrease degeneration and fragmentation.

Research question: is laser zona thinning prior to ICSI will improve oocyte survival, fertilization, blastocyst formation, decrease degeneration of oocytes and increase pregnancy rate?

Research hypothesis:

Laser assisted ZP thinning prior to ICSI will improve oocytes survival, increase successful fertilization, cleavage and blastocyst formation and will increase pregnancy rate.

Null hyothesis:

Laser zona thinning prior to ICSI will not significantly improve pregnancy rate or decrease degeneration of oocytes or increase fertilization rate and blastocyst formation rate.

Intracytoplasmic Sperm Injection (ICSI)

History:

Interest in the initial types of micro-manipulation procedures, such as zona drilling and PZD, evolved because of the disappointing results of standard IVF for the severe male factor patients. In these procedures, a physical opening is created in the zona pellucida by using chemical "drilling" or by making a microscopic mechanical incision. In SUZI, the micro-injection of spermatozoa into the peri-vitelline space (between the zona pellucida and the plasma membrane), gained popularity for severe male factor infertility because typically only 3 to 4 sperms were inserted per oocyte. The high rate of polyspermy, a lethal condition involving the entrance of more than 1 sperm into the egg and a problem with PZD and SUZI, was finally overcome with ICSI, which requires the injection of only a single sperm per egg. (Lamb and Lipshultz, 2003).

Reports began appearing in scientific journals of 1992 of consistently successful treatment outcomes following the clinical application of ICSI. The reports were initially made by the group of workers of the Dutch-speaking Brussels Free University led by Professor Andre Van Steirteghem (*Palermo et al., 1992; Meniru, 2001*).

This procedure is thought to bypass some of the physiologic events, such as capacitation and the acrosome reaction, that are normally required for fertilization in-vivo. In general, ICSI has allowed couples with male factor infertility to achieve pregnancy outcomes that are comparable with those of couples with non-male factor infertility using IVF treatment (*Yao and Schust, 2002*).