A COMPARATIVE STUDY OF AN INTEGRATED PHARMACEUTICAL CARE PLAN AND A ROUTINE CARE IN BRONCHIAL ASTHMA

A Thesis Submitted in Partial Fulfillment of the Requirements for Master Degree in Pharmaceutical Science (Clinical Pharmacy)

Submitted By

Rana Rasheed Farrag

BSc in Pharmacy (2008)
Ain Shams University

Under The Supervision of

Prof. Manal EL Hamamsy

Professor of Clinical Pharmacy,
Faculty of Pharmacy,
Ain Shams University

Prof. Mamdouh Zaki

Professor of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University

Prof. Taher EL-Naggar

Professor of Chest Diseases, Faculty of Medicine, Ain Shams University

Ain Shams University Faculty of Pharmacy (Cairo - Egypt)

2014

ABSTRACT

Background:

Bronchial asthma is a chronic chest disease constituting a serious public health problem all over the world. Unfortunately it is still too often poorly controlled and evidence-based guidelines are still insufficiently implemented. A paradigm shift for asthma care implies that the level of asthma control should be continuously monitored and that treatment should be adjusted according to the patients' current asthma-control status. Pharmacists could assist to achieve and maintain asthma control by providing patient education and medical supervision .

Aim: The study compares the effect of asthma care by clinical pharmacist intervention versus routine care on asthma control.

Patients and Methods:

A 2-month randomized, controlled trial was conducted in outpatient clinics of Ain Shams University Hospitals, Cairo, Egypt. Patients were randomly assigned to receive routine care (n=30) or a pre-defined pharmacist intervention (n=30). This intervention mainly focused on patient education, improving inhalation technique and medication assessment. Primary outcome was the level of asthma control, as assessed by the Asthma Control Questionnaire (ACQ).

Results:

By the end of the study, the intervention patients who received a written action plan significantly improved their ACQ results than routine care group who did not receive a plan (p<0.0001). The intervention also reduced reliever medication use and the frequency of night-time awakenings due to asthma. Inhalation technique and adherence to controller medication were significantly better in the intervention group.

Conclusion:

The present study results provide supportive evidence concerning pharmacists' favorable effects on asthma patient care and support clinical pharmacists as key members of the health care team.

Keywords: Asthma Control Questionnaire; Asthma Action Plan; Patient education; Adherence; Inhalation Technique.

ACKNOWLEDGEMENT

I wish to express my deepest thanks and respect to Prof. Mamdouh Ahmed Zaki, Prof. Taher El-Naggar and Prof. Manal El-Hamamsy for their continuous advice, close supervision and kind support all through this study.

I wish to express my thanks and respect to Dr. Mohsen Fathallah, executive manager of Genuine Research Center, for statistical advice.

I would like to thank Dr. Ahmed Galal, Department of Chest Diseases, Faculty of Medicine, Ain Shams University, as well as all staff members and allied health team for their help complete this study as appropriate.

I wish to express my gratitude to staff members from the Department of Hypersensitivity and Immunology, Faculty of Medicine, Ain Shams University, for their co-operation.

LIST OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	iii
LIST OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF ILLUSTRATIONS	ix
LIST OF ABBREVIATIONS	xii
INTRODUCTION	1
1. Definition and Pathogenesis	1
2. Factors influencing the development of asthma	15
3. Signs, Symptoms& Diagnosis	25
Reversibility Testing:	35
Differential Diagnosis:	37
4. Management of Asthma	43
Corticosteroids	50
Beta2 – adrenoreceptor Agonists	59
Anticholinergics	65
Leukotriene Modifiers	66
Methylxanthines	69
Immunomodulators	71
Complementary Therapy	73

Bronchial Thermoplasty	75
New Drugs for Asthma	76
5. Role of Clinical Pharmacist	79
Asthma Triggers Avoidance	79
Proper Inhaler Use	80
Choosing the appropriate inhalation device	83
Educating the patient about proper inhaler use	84
Maintaining proper inhaler technique	85
Changing inhalers and patient preferences	85
Adherence	86
Written Action Plans and Asthma Self-management	87
Shared Decision Making	87
AIM OF THE WORK	88
PATIENTS & METHODS	89
Patients	89
Methods	90
Setting	90
Study Design	90
Materials	93
Tools of the Study	94
Outcome Measures	111
Statistical Analysis	112

RESULTS	
Asthma Control:	
Adherence to Controller Medication	
Inhalation Technique 122	
DISCUSSION	
Conclusion	
Study Limitations	
Recommendations	
APPENDIX	
REFERENCES	
أ الملخص العربي	

LIST of TABLES

Table Page
Table 1.Key inflammatory mediators in the pathogenesis of asthmatic inflammation
Table 2.Asthma Susceptibility Genes Selected Examples
Table 3. Clinical features in adults that influence the probability of asthma
Table 4. Lung Volumes and Capacities- Explanatory Table34
Table 5. Differential diagnosis for asthma in adults
Table 6. Asthma Control
Table 7. Classification of Asthma Severity in Adults and Adolescents 12 Years and Older
Table 8. Assessment of Overall Asthma Control in Adults47
Table 9. Effect of glucocorticoids on transcription of genes related to asthma
Table 10. Possible adverse effects of oral corticosteroid therapy 56
Table 11. Estimated equipotent daily doses of ICS (μg) for adults 59
Table 12. Different types of inhalation devices available for asthma
Table 13. Inhaler selection algorithm. 84
Table 14. Pharmaceutical Products Used in the Study94
Table 15. Asthma Control Questionnaire
Table 16. Overview of Patient Education Intervention
Table 17. Demographic Characteristics for Patients Participating in the Study

e
115
116
•

LIST OF ILLUSTRATIONS

Figure Page
Figure 1. Cycle of chronic inflammation in patients with asthma5
Figure 2. Pathogenesis of allergic asthmatic inflammation
Figure 3. Viral Infections and Asthma Susceptibility
Figure 4. Barrel Chest in asthma
Figure 5. The mechanics of breathing and the respiratory muscles 31
Figure 6. Atopic skin conditions associated with asthma
Figure 7. A schematic illustration of lung volumes and capacities .34
Figure 8. A spirogram comparing FEV1 values in asthmatic and healthy subjects
Figure 9. Reversibility testing
Figure 10. Goals of Asthma Management
Figure 11. Stepwise management approach for asthma46
Figure 12. Chronic Inflammation in asthma and potential therapeutic targets
Figure 13. Gene regulation by histone acetylation
Figure 14. Acetylation of Glucocorticoid Receptor (GR)
Figure 15. Cellular and structural effects of glucorticosteroids 54
Figure 16. Schematic representations of the disposition of inhaled drugs
Figure 17. Mechanism of action of β 2-agonists
Figure 18. Actions of β_2 -agonists in airways

Figure 19. Complementary actions of LABAs and corticosteroids in the pathophysiology of asthma
Figure 20. The molecular interaction between corticosteroids and β2-agonists
Figure 21. Diagram of Leukotriene Formation
Figure 22. Omalizumabo (Xolair®) Mechanism of Action72
Figure 23. Flow of Participants in the Study
Figure 24. Patient Data Record
Figure 25. Flowmate Plus 2500.
Figure 26. Asthma Action Plan (English Version)
Figure 27. Asthma Action Plan (Arabic Version)
Figure 28. Pathogenesis of Asthma
Figure 29. Patient Education Card-1 Asthma Triggers
Figure 30. Patient Education Card-2 Proper Use of MDI (Metered-Dose Inhalers)
Figure 31. Proper Inhaler Technique Checklist for Metered Dose Inhaler (MDI)
Figure 32. Proper Inhaler Technique Checklist for Discus Dry Powder Inhaler
Figure 33. Study Flow Diagram
Figure 34. ACQ-scores after a 2-month Follow-up
Figure 35. dC-FEV1% after a 2-month Follow-up
Figure 36.ER-Visits and Hospitalization related to asthma 119
Figure 37.Short-Acting β2-Agonist use after a 2-month follow-up119

Figure 38.Inhaled Corticosteroid Use after a 2-month follow-up 120
Figure 39.Number of Courses of Systemic Steroid Used during a 2-month follow-up
Figure 40. % Patients achieved asthma control at the end of the study
Figure 41. Patient Adherence to Therapy
Figure 42. %Patients Achieved Correct Steps Inhalation Technique at Baseline
Figure 43. %Patients Achieved Correct Steps Inhalation Technique at the End of the Study

LIST OF ABBREVIATIONS

5-LO inhibitor 5- Lipooxygenase inhibitor

AC Adenylyl Cyclase

ACQ Asthma Control Questionnaire

ACT Asthma Control Test
ASM Asthma Self-Management

ATS/ERS American Thoracic Society/ European Respiratory

Society

BA-pMDI Breath-actuated pressurised Metered-Dose Inhaler
BREATHE Better Respiratory Education and Asthma Treatment

in Hinton and Edson

BT Bronchial Thermoplasty

CAM Complementary and Alternative Medicine

c-AMP cyclic- Adenosine monophosphate

CCL5 Chemokine Ligand 5 CCR3 Chemokine Receptor 3

CD4 Cluster of Differentiation type 4

COPD Chronic Obstructive Pulmonary Disease

CSS Churg-Strauss Syndrome
CYP Cytochrome p450 enzyme
Cys-LTs Cysteinyl Leukotrienes
DNA Deoxy Ribonucleic Acid
DPI Dry Powder Inhaler

ER visits Emergency Room visits related to asthma
EXCELS The Epidemiologic Study of Xolair: Evaluating
study Clinical Effectiveness and Long-term Safety in

Patients with Moderate-to-Severe Asthma (EXCELS)

FCeRI high-affinity receptor for the Fc region of

immunoglobulin E

FDA Food and Drug Administration FE_{NO} Fractional Exhaled Nitric Oxide

FEV1 Forced Expiratory Volume in one second

FVC Forced Vital Capacity

GINA Global Initiative for Asthma

GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor

GR Glucocorticoid Receptor GWA Genome-Wide Association HDAC2 Histone deacetylase type 2 HLA Human Leukocyte Antigen

HRV Human Rhinovirus

IBM Corp. International Business Machine Corporation

ICS Inhaled corticosteroid
IgE Immunogloulin E
IL-4 Interleukin-4

LABA Long-acting beta2 agonist

LAMA Long-acting muscarinic antagonist
LRI Lower Respiratort Infections
LTRA Leukotriene Receptor Antagonist
m-RNA messenger- Ribonucleic acid

NCCAM National Center for Complementary and Alternative

Medicine

NNT Number needed to treat

PC₂₀ Provocation Concentration of methcoline required to

cause a 20% fall in FEV1

PCAP Pharmacy Asthma Care Program

PDE Phosphdiestrase
PEF Peak Expiratory Flow
PKA Protein Kinase A

p-MDI pressurised Metered-Dose Inhaler RSV Respiratory Syncytial Virus SABA Short-acting beta2 agonist

SFC Salmeterol/Fluticasone Combination
SPSS Statistical Package for the Social Sciences

Th2
 T-lymphocyte helper cell type 2
 TNF-α
 Tumer Necrosis Factor-alpha
 TSLP
 Thymic Stromal Lymphopoietin

VCD Vocal Cord Dysfunction
VHC Valved holding chamber
WAAP Writen Asthma Action Plan
WHO World Health Organization

INTRODUCTION

Asthma is a common chronic disorder with increased prevalence worldwide. World Health Organization (WHO) estimates that 300 million people are affected with asthma (Anandan, et al., 2010).

Asthma is characterized by paroxysmal or persistent symptoms such as dyspnea, chest tightness, wheezing, sputum production and cough, associated with variable airflow limitation and a variable degree of airways hyper-responsiveness to endogenous or exogenous stimuli (Lougheed, et al., 2010). Although good asthma control can be achieved in clinical trials, it is more difficult to achieve in real-life situation studies (Rabe, et al., 2004). Despite advances in asthma management, a large number of patients are still "insufficiently controlled", putting them at risk for asthma-related morbidity and mortality (Mehuys, et al., 2008).

Salama and his colleagues reported that health care delivery was inadequate in Egypt as irrational prescribing and practices were generally widespread and misconceptions were commonly encountered, both among the public and health professionals. Therefore, minimum standards of health care for individuals with asthma must be identified (Salama, et al., 2010).

In an attempt to improve asthma control, the Global Initiative for Asthma (GINA) updated its asthma management guidelines