Comparing Different Frequency Cardiac Rehabilitation Programs in Stable Ischemic Heart Disease Patients

Thesis
Submitted for the Partial Fulfillment of Master
Degree in Cardiology

 $\mathcal{B}y$ Remon Wadie Mossaad M.B.CH.B

Supervised by Prof. Dr. Mohammed Ayman Saleh

Professor of Cardiology Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Ahmed Mohammed ElMissiri

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohammed Ayman Saleh**,

Professor of Cardiology Faculty of Medicine - Ain Shams

University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Ass. Prof. Dr. Ahmed Mohammed & Missiri, Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University for his sincere efforts, fruitful encouragement.

Remon Wadie Mossaad

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the work	3
Review of Literature	
Cardiac Rehabilitation	4
Exercise Prescription	18
Patients and Methods	28
Results	55
Master Table	82
Discussion	86
Study Limitations	95
Summary	96
Conclusions	100
Recommendations	101
References	102
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between the 2 groups re	garding
	demographic data	
Table (2):	Comparison between the 2 groups re	~ ~
	Clinical data at baseline	
Table (3):	Comparison between the 2 groups re	
7 11 (4)	laboratory findings at baseline	
Table (4):	Comparison between the 2 groups re	
	echocardiographic measurements	
Table (5):	baseline.	
Table (5):	Comparison between the 2 groups re clinical data and anthropometry at	
	up	
Table (6):	Comparison between the 2 groups re	
Table (0).	laboratory findings at follow-up	
Table (7):	Comparison between the 2 groups re	
20020 (1)1	echocardiographic measurements at	
	up	
Table (8):	Comparison between patients in gro	
	baseline and follow-up) regarding	clinical
	data and anthropometry	70
Table (9):	Comparison between patients in gro	
	baseline and follow-up) regarding lab	
	findings.	
Table (10):	Comparison between patients in gro	
	baseline and follow-up) re	•
m 11 (11)	echocardiographic measurements	
Table (11):	1 1	-
	baseline and follow-up) regarding	
Table (19).	data and anthropometry Comparison between patients in grou	
1 abie (12):	baseline and follow-up) regarding lat	_
	findings	•

List of Tables cont...

Table No.	Title	Page No.
Table (13):	Comparison between patients in g	-
	baseline and follow-up) echocardiographic measurements.	
Table (14):	Comparison between percentage due to CR program regarding cli and anthropometry between group	nical data
Table (15):	Comparison between percentage due to CR program regarding	of change
	findings between groups I and II	81
Table (16):	Comparison between percentage due to CR program echocardiographic measurements	regarding
	groups I and II	81

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Burden of CVD in Egypt Colour Doppler echocardiograph different apical views was used t the degree of mitral regurgita tracing regurgitant jet area mosaic colour flow within the I	y in the to assess tion via as the
Figure (3):	as a relative ratio of MR jet / LA Measuring PASP via tracing m velocity of tricuspid regurgita (TR Vmax) by continuous wave across the tricuspid valve in th 4 chamber view	aximum tion jet Doppler te apical
Figure (4):	Bar chart showing state significant difference between number of dyslipidemic patient the 2 groups	tistically en the s within
Figure (5):	Box and whisker showing states significant difference regarding BMI measurements between groups in comparison	tistically ing the the 2 after
Figure (6):	rehabilitation program	tistically ing the 2 groups vilitation
Figure (7):	program	ing the n the 2 after

List of Figures cont...

Fig. No.	Title Pag	ge No.
Figure (8):	Box and whisker showing statistical significant difference regarding seru cholesterol measurements between the	m
Figure (9):	2 groups in comparison after rehabilitation program	66 ly
	significant difference regarding seru. LDL measurements between the groups in comparison after	2 er
Figure (10):	rehabilitation program	ly m 2 er
Figure (11):	rehabilitation program. Box and whisker showing statistical significant difference regarding seru TGDs measurements between the groups in comparison after	ly m 2 er
Figure (12):	rehabilitation program. Box and whisker showing statistical significant difference regarding MET achieved between the 2 groups comparison after rehabilitation program.	ly ſs in on

List of Abbreviations

Abb.	Full term		
AACVPR	. American association of cardiovascular and pulmonary rehabilitation		
ACS	. acute coronary syndrome		
<i>ADA</i>	American Diabetes Association		
<i>AHA</i>	. American Heart Association		
<i>AMI</i>	. Acute myocardial infarction		
<i>BACPR</i>	British Association for Cardiac Prevention and Rehabilitation		
<i>BMI</i>	. Body mass index		
<i>BP</i>	Blood pressure		
<i>CACR</i>	Canadian Association of Cardiac Rehabilitation		
<i>CAD</i>	Coronary artery disease		
CCS	Canadian Cardiovascular Society		
<i>CHD</i>	. Coronary heart disease		
CHF	Congestive heart failure		
Chol	Cholesterol level		
CR	Cardiac rehabilitation		
<i>CRP</i>	Cardiac rehabilitation program		
CVD	Cardiovascular disease		
CVDPR			
<i>DBP</i>	. Diastolic blood pressure		
<i>EACPR</i>	European Association for Cardiovascular Prevention and Rehabilitation		
ECG	. Electrocardiography		
<i>EF</i>	. Ejection fraction		
<i>ESC</i>	. European Society Cardiology		
	Fasting blood sugar		
HBA1C	Glycosylated hemoglobin		
	. High contact frequency		

List of Abbreviations cont...

Abb.	Full term
HDL	. High density lipoprotein
HR	. Heart rate
HRmax	. Maximal heart rate
HRrest	. Resting heart rate
<i>IHD</i>	. Ischemic heart disease
JA	. Jet area
JBS	. Joint British Societies for the prevention of
	cardiovascular disease
<i>LA</i>	•
<i>LCF</i>	. Low contact frequency
<i>LDL</i>	. Low density lipoprotein
<i>LV</i>	Left ventricular
LVEF	. Left ventricular ejection fraction
<i>MET</i>	. Metabolic equivalent
MHR	. Maximal heart rate
MHz	. Mega Hertz
<i>MI</i>	. Myocardial infarction
<i>MR</i>	. Mitral regurgitation
<i>NHP</i>	. Nottingham health profile questionnaire
NSTEMI	Non-ST elevation myocardial infarction
<i>NYHA</i>	. New York Heart Association
QOL	. Quality of life
<i>PASP</i>	. Pulmonary artery systolic pressure
	. Percutaneous coronary intervention
PTCA	
	angioplasty
<i>RBS</i>	. Random blood sugar
S/S	. Symptoms and signs
SBP	. Systolic blood pressure
SIGN	Scottish Intercollegiate Guideline Network

List of Abbreviations cont...

Abb.	Full term
SOB	. Shortness of breath
<i>SPSS</i>	. Statistical package for social science
STEMI	ST elevation myocardial infarction
TC	. Total cholesterol
<i>TG</i>	. Triglycerides
<i>TGD</i>	. Serum triglycerides
<i>THR</i>	. Target heart rate
TR	. Tricuspid regurgitation
VO2peak	. Maximal oxygen uptake
<i>WHO</i>	. World Health Organisation

Abstract

This study showed the favorable effect of CRP on lipid profile (including TC, TG, HDL, and LDL) of patients with CVD, we suggest that for achieving the most favorable impact on lipid levels in patients with CVD, a multifactorial CRP that include exercise training, dietary education, and psychological support and counseling should also include educational sessions on the importance of pharmacological as well as nonpharmacological treatments of serum lipids

From a public health perspective, it is essential to emphasize that overweight / obese individuals with risk factors or with established type 2 diabetes and CVD can reap important cardio-metabolic benefits from physical activity, cardiac rehabilitation and healthy eating regardless of changes in adiposity. Thus, overweight/obese individuals considered at increased risk for CVD and type 2 diabetes due to sedentary lifestyle, poor diet, and a high BMI should be encouraged to engage in regular physical activity and consume a more nutrient-dense diet, regardless of whether the healthier lifestyle leads to weight loss.

Higher frequency and intensity CR programs have more favourable effect than lower ones in context of more improvement in anthropometric measures, effort tolerance, symptomatology, laboratory and echocardiographic measurements so they should be encouraged more and indidually tailored according to each single patient's circumstances.

Key words: Ischemic heart disease - Maximal heart rate-Myocardial infarction- Metabolic equivalent

Introduction

Percutaneous coronary intervention (PCI) is an effective and established treatment for clinically significant coronary artery disease (CAD) (Eagle et al., 2004; Bravata et al., 2007).

The term cardiac rehabilitation (CR) refers to coordinated, multifaceted interventions designed to optimize a cardiac patient's physical, psychological, and social functioning, in addition to stabilizing, slowing, or even reversing the progression of the underlying atherosclerotic processes, thereby reducing morbidity and mortality (*Taylor et al., 2004*).

Recent meta-analyses of randomized studies on the effects of exercise-based CR in patients with CAD have demonstrated a statistically significant reduction in total and cardiac mortality ranging from 20% to 32% in patients undergoing CR compared with those receiving standard medical care (Geol et al., 2011; Taylor et al., 2006).

Recently, the widespread use of primary PCI has enabled early ambulation of patients with acute myocardial infarction (AMI) and acute coronary syndrome (ACS) by reducing acute phase complications, resulting in minimal physical deconditioning. As a result, many AMI patients leave a hospital early without participating in a recovery phase (phase II) outpatient CR program (*Kamakura et al., 2011*).

Recommended exercise training frequency Similar to exercise intensity, should also be set individually. In addition to initial fitness of the patient, factors that should be taken into account include physical activity related to the profession of the patient and his or her daily life activity (Oldridge et al., 1988; Sesso et al., 2000).

Most early trials of exercise-based cardiac rehabilitation consisted of three exercise sessions per week for eight weeks or longer.

Twice weekly exercise has since been found to increase maximum physical working capacity to the same extent as thrice weekly exercise (Jolliffe et al., 2000; Wenger et al., 1995).

Aim of the Work

The aim of this study was to compare the effects of short term (6 weeks) twice weekly cardiac rehabilitation program "high contact frequency (HCF) group "to the once weekly (12 weeks) "low contact frequency (LCF)" program in patients with stable coronary artery disease (CAD) after total revascularization by PCI regarding symptomatology, effort tolerance, laboratory changes, anthropometric parameters and echocardiographic measurements.

Chapter 1:

Cardiac Rehabilitation

Background

Cardiovascular disease (CVD) is the most common cause of mortality and morbidity in the world, accounting for 30% of all-cause mortality (Mathers CD, et al. 2011). In Egypt, CVD accounts for 39% of all-cause mortality for non-communicable diseases in all ages (Alwan A et al. 2010)

Egypt

Obesity

Raised cholesterol

2010 total population: 81 121 077 Income group: Lower middle

NCD mortality				Proportional mortality (% of total deaths, all ages
2008 estimates		males	females	
Total NCD deaths (000s)		198.9	172.2	Communicable,
NCD deaths under age 60 (percent of all NCD deaths)		38.1	27.8	maternal, Injuries perinatal and 6% nutritional
Age-standardized death rate per 100 000				conditions
All NCDs		829.7	660.0	12%
Cancers		107.3	76.1	
Chronic respiratory diseases		33.2	24.3	
Cardiovascular diseases and diabetes		427.3	384.0	
Behavioural risk factors				
2008 estimated prevalence (%)	males	females	total	
Current daily tobacco smoking	35.1	0.5	17.8	
Physical inactivity	300	300	322	Other NCDs 26%
Metabolic risk factors				
2008 estimated prevalence (%)	males	females	total	
Raised blood pressure	35.5	34.5	35.0	Diabetes
Raised blood glucose	6.2	6.9	6.5	Diabetes Cancers 3% Respiratory
Overweight	60.4	75.3	67.9	diseases

Figure (1): Burden of CVD in Egypt (WHO, 2010).

NCDs are estimated to account for 82% of all deaths.

33.1

38.6