DIAGNOSTIC AND PROGNOSTIC VALUE OF SERUM LEPTIN LEVEL IN CRITICALLY ILL PEDIATRIC PATIENTS WITH SEPSIS

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatric

By Heba Mostafa Ragab

M.B.B.CH, Ain Shams University

Under Supervision of

Prof. Dr. Hanan Mohamed Ibrahim

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Mervat Gamal El Deen Mansour

Assistant Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Manal Mohamed Abd El Aziz

Professor of Clinical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University **2015**

بسم الله الرحمن الرحيم

"قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ"

صدق الله العظيم سورة البقرة الآية (32)

DEDICATION

My heartily thanks and deepest gratitude to all my family, especially to my kindhearted mother and lovely husband for their support, understanding and tolerance all the time till this work was completed

ACKNOWLEDGMENT

First and foremost, thanks are all to ALLAH

I am greatly honored to express my sincere appreciation and gratitude to **Professor Dr. Hanan Mohammed Ibrahim**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for giving me the privilege of working under her supervision with generous help, guidance, kind encouragement and great fruitful advice.

I find no words by which I can express my extreme thankfulness, deep appreciation, and profound gratitude to my Assistant Professor. **Mervat Gamal Eldein Mansour,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her kind supervision, enthusiastic guidance, constant support, illuminating discussion and valuable time she spent adding precious suggestions and remarks.

Great thanks and deep appreciation are conveyed to **Prof. Dr. Manal Mohamed Abd El Aziz**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great kindness, constant assistance and helpful guidance.

Last but not least, I would like to express my endless respect to the team of **Pediatric Intensive Care Unit** in our hospital L patients.

Heba Mostafa

LIST OF ABBREVIATIONS

ACCM American College of Critical Care Medicine

ACTH Adreno cortical hormone

ALT Alanine aminotransferase

ANC Absolute neutrophil count

APTT Activated Partial Thromboplastin time

AST Aspartate aminotransferase

ARC Arcuate nucleus

BMN Bone mineral density

BUN Blood urea nitrogen

Ca Serum calcium

CBC Complete blood count

CCK Cholecystokinin

CNS Central Nervous System

Creat. Creatinine

CRP C-.reactive protein

CSF CerebroSpinal Fluid

CVVH Continuous Venovenous Haemofiltration

DBP Diastolic blood pressure

DIC Disseminated Intravascular Coagulation

DVT Deep Venous Thrombosis

ECMO Extra Coporeal Membrane Oxygenation

FDP Fibrinogen degradation products

FiO2 Fraction of inspired oxygen

GCS Glasgow coma score

GFR Glomerular filtration rate

GH Growth hormone

Hb Hemoglobin

Hib Hemophilus influenzae type b

HS High Significant

HR Heart Rate

ICU Intensive care unit

IFN Interferon

IL Interleukins

INR International normalized Ratio

K Serum potassium

MAP Mean arterial pressure

MIP_1α Macrophage inflammatory protien-1-alpha

MODS Multiple organ dysfunction syndrome

MV Mechanical Ventilation

n Number

NK Natural killer cells

N meningitides Neisseria meningitides

NP (CPAP) Nasopharyngeal CPAP

NPY Neuropeptide Y

Na Serum sodium
NS Non Significant

P Probability

PaCO₂ Partial arterial carbon dioxide

PaO2 Partial arterial Oxygen

PALS Pediatric Advanced Life Support

PGI₂ Prostacyclin

PICU Pediatric Intensive Care Unit

Plat Platelet count

PAF platelet activating factor

PIM II Predicted Index of Mortality

PMNL Polymorphnuclear leukocytes

PT Prothrombin Time

PVN Para ventricular nucleus

ROC Receiver Operating Characteristic

S pneumoniae Streptococcus pneumoniae

S Significant

S. Creat. Serum Creatinine

SBP Systolic Blood Pressure

SD Standard Deviation

Sig Significance

SIRS Systemic Inflammatory Response Syndrome

SpeA Streptococcal pyrogenic exotoxin A

Std. Deviation Standard Deviation

SVO₂ Mixed Venous Oxygen saturation

SU Stress Ulcer

Temp Temperature

TLC Total Leucocytic Count

TNF Tumor Necrosis Factor

TXA₂ Thromboxan A₂

TSST Toxic Shock Syndrome Toxin

RR Respiratory rate

VAP Ventilator associated pnemonia

Vs Versus

WBC White Blood Cell

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Development of SIRS	8
Figure (2):	Disseminated intravascular coagulation	. 9
Figure (3):	Hypotherotical pathophysiology of septic process	12
Figure (4):	Mechanical ventilation percentage among patient group)
	showing that 87% of patients have been ventilated	n 50
Figure (5):	Comparison between patients and controls regarding serum leptin level show significant difference higher in	1
	patient group than control group	54
Figure (6):	Receiver Operating Characteristic (ROC) curve for cutoff	f
	levels of serum leptin in the diagnosis of sepsis	54
Figure (7):	Comparison between sepsis and severe sepsis as regards	S
	outcome showing that 60% of outcome is death	. 62
Figure (8):	Correlation between leptin day (1) and PIM II score	. 64
Figure (9):	Correlation between leptin day (3) and PIM II score	. 64
Figure (10):	Comparison between Survivors and Non-Survivors as	8
	regards leptin level in day (1) and day (3)	66
Figure (11):	Receiver Operating Characteristic (ROC) curve for cutoff	f
	levels of leptin in the prediction of mortality	. 66
Figure (12):	Correlation between mortality and serum leptin level at	
	day (1,3)	67

LIST OF TABLES

Tab. No.	Title P	age No.
Table (1):	Definitions of sepsis	5
Table (2):	Proinflmmatory and anti-inflammatory cytokines	
Table (3):	Diagnostic criteria of sepsis	
Table (4):	Diagnostic criteria of sepsis	
Table (5):	Demographic data of studied patients.	
Table (6):	Patient's primary medical diagnosis	
Table (7):	Vital data of studied patients	
Table (8):	Assessment of critical illness by PIM II score	49
Table (9):	Mechanical ventilation among studied patients	50
Table (10):	Descriptive data of ionotropics had been taken to of	f
,	studied patients	
Table (11):	Descriptive data of (blood, plasma, albumin) transfusion	
,	and renal dialysis among patients	
Table (12):	Laboratory data of sepsis in studied patients	
Table (13):	Culture analysis of studied patients	
Table (14):	Comparison between control group and patients group	
,	regarding age, sex and weight	
Table (15):	Comparison between control and patients groups as	
,	regards their leptin level.	53
Table (16):	Comparison between sepsis and severe sepsis regarding	ζ
, ,	age, sex and weight	55
Table (17):	Comparison between sepsis group and severe sepsis	S
	group regarding vital data & PIM II score	56
Table (18):	Comparison between sepsis and severe sepsis regarding	5
	serum electrolytes and renal function test and liver	ſ
	function test day (1)	56
Table (19):	Comparison between sepsis and severe sepsis as regards	3
	their blood gases on day (1)	57
Table (20):	Comparison between sepsis and severe sepsis as regards	3
	their hematological data on day (1)	57
Table (21):	Comparison between sepsis and severe sepsis as regards	S
	their serum electrolyte and renal function test and liver	ſ
	function test on day (3)	58
Table (22):	Comparison between sepsis and severe sepsis as regards	
	their hematological data on day (3)	58
Table (23):	Comparison between sepsis and severe sepsis as regards	
	their blood gases on day (3)	59
Table (24):	Comparison between sepsis and severe sepsis as regards	
	their CRP on day (1& 3)	59
Table (25):	Comparison between sepsis and severe sepsis groups as	
	regards their blood, sputum and urine cultures	60
Table (26):	Comparison between sepsis and severe sepsis regarding	
	ionotropics treatment	61
Table (27):	Comparison between sepsis & severe sepsis regarding	
m 11 (20)	transfusion & dialysis	61
Table (28):	Comparison between sepsis & severe sepsis regarding	•
	MV among sepsis & severe sepsis group	62

LIST OF TABLES

Tab. No.	Title Pa	age No.
Table (29):	Comparison between sepsis and severe sepsis group	
	regarding outcome	63
Table (30):	Comparison between sepsis group and severe sepsis	
	group as regards their leptin level	63
Table (31):	Correlation between PIM II score and serum leptin level	
	at day (1,3)	63
Table (32):	Correlation between leptin at day (1,3) and CRP	65
Table (33):	Correlation between average length of stay and leptin at	
	day (1,3).	65
Table (34):	Comparison between survivors and non-survivors as	
	regards leptin level	65
Table (35):	Correlation between leptin at day (1) and (age & weight).	68
Table (36):	Relation between leptin at day (1) and Sex	68
Table (37):	Relation between diagnosis and leptin at day (1,3)	68
Table (38):	Correlation between leptin at day (1,3) and the studied	60
T. 1.1. (20)	parameters in the patients groups	69
Table (39):	Relation between leptin at day (1,3) and mechanical	<i>(</i> 0
Table (40).	ventilation in patients group.	69
Table (40):	Correlation between leptin at day (1,3) and studied	70
Table (41).	parameters	70
Table (41):	parameters	70
Table (42):	Relation between leptin at day (1) and (blood, sputum and	70
1 abie (42).	urine cultures)	71
Table (43):	Relation between leptin at day (3) and (blood, sputum and	/ 1
1 abic (45).	urine cultures)	72
Table (44):	Relation between leptin at day (1) and ionotropic drugs in	
10020 (11)0	patients group.	73
Table (45):	Correlation between leptin at day (3) and ionotropic drugs	
,	in patients group.	73
Table (46):	Relation between leptin at day (1) and antibiotic drugs in	
	patients group	74
Table (47):	Relation between leptin at day (3) and antibiotic drugs in	
	patients group	75
Table (48):	Relation between leptin at day (1) and antifungal drugs in	
	patients group	76
Table (49):	Relation between leptin at day (3) and antifungal drugs in	
	patients group.	76
Table (50):	Relation between leptin at day (1) and (blood, plasma,	
	albumin) transfusion and renal dialysis in patients group	77
Table (51):	Relation between leptin at day (3) and (blood, plasma,	
	albumin) transfusion and renal dialysis in patients group	77

LIST OF CONTENTS

Title Page	
Introduction	1
Aim of the work	
Review of Literature	
Sepsis in critically ill children	4
• Leptin	
Leptin & sepsis	
Subjects & methods	42
Statistical analysis	
Results	
Discussion	
Summary and conclusion	
Recommendations	
References	
Arabic Summary	

INTRODUCTION

Sepsis is a systemic inflammatory reaction that is triggered by an infective agent (such as bacteria, viruses, fungi or parasites) (Monneret G, 2010), It is one of the major health concerns worldwide and also the predominant reason for intensive care unit (ICU) admission (Arabi Y et al., 2003), With the rapidly increasing incidence, high mortality rates, complex pathophysiology and overall difficulties in its treatment, sepsis is becoming an important focus for researchers and clinicians (Martin GS, 2012).

Infections and sepsis are accompanied by clinical signs such as leukocytosis, changes in body temperature and the development of tachycardia. However, these classic indicators of systemic inflammation are neither sensitive nor specific for sepsis (*Fried E et al., 2011*). They have only moderate sensitivity and specificity and are not early markers due to the time taken to produce a reaction. Therefore, early markers are useful for the diagnosis and treatment of sepsis and are crucial for overcoming sepsis-associated mortality.

Cytokine levels are an obvious choice as a marker of sepsis. The systemic release of inflammatory cytokines occurs several hours prior to other markers of systemic inflammation, such as acute phase protein release and leucocytosis, suggesting their potential importance as diagnostic parameters in systemic inflammatory response syndrome (SIRS) and sepsis (*Andaluz-Ojeda D et al., 2012*). When sepsis occurs, multiple redundant inflammatory cytokines are released into the blood stream, including tumor necrosis factor- α (TNF- α), interleukin-6 (IL-6), leptin, C-reactive protein (CRP) and procalcitonin (PCT) (*Song R et al., 2012*), which are important for mediating the inflammatory response.

The hormone leptin (molecular weight of 16-kDa) is mainly generated by adipocytes and contributes to the regulation of energy balance by informing the brain of the volume of adipose tissue in the body, thereby regulating food intake and energy expenditure (*Hoda MR et al., 2012*), Leptin also regulates endocrine and immune function. It plays a role in innate and acquired immunity. Both the structure of leptin and that of its receptor suggest that leptin can be classified as a cytokine (*Margalet VS et al., 2010*).

AIM OF THE WORK

Evaluation of the role of serum leptin level in early diagnosis of sepsis in critically ill patients and its possible prognostic value.

Sepsis in Critically ill Children

Introduction:

Sepsis remains a major clinical problem as it affects many patients. Moreover, sepsis is a major cause of death in the intensive care units (ICUS) worldwide and uses a large amount of hospital resources (*Butt*, 2001).

Despite advances in the supporting care, severe sepsis carries a high mortality rate ranging from 30%-50% in adults. Whereas in children, It is estimated at between 10% and 20% (*Pastores*, 2004).