Serum Soluble Triggering Receptor Expressed on Myeloid Cells versus 16s rRNA genes detection in early diagnosis of bacteremia in malignant febrile neutropenic patients

thesis

Submitted for partial fulfillment of M.D. degree in Medical Microbiology and Immunology

Presented by

Omima Sayed Mohammed

Master degree of Medical Microbiology and Immunology

Under supervision of

Dr. Manal Mohamed Yassin

Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University

Dr. Nehad Mohamed Sayed

Professor of Medical Microbiology and Immunology
Faculty of Medicine, Ain Shams University

Dr. Lamiaa Abd EL Monem Adel

Assistant professor of Medical Microbiology and Immunology
Faculty of Medicine, Ain Shams University

Faculty of Medicine

Ain Shams University

2015

مستوى المستقبل المحفز الموجود على الخلايا الميلوديه الذائب في المصل بالمقارنه بالمكشف عن جينات الحامض النووى الريبوزى البكتيرى ذي الترميز ١٦ إس في التشخيص المبكر لوجود البكتيريا في دم مرضى قلة العدلات الحموية الناتجة من الاورام الخبيثة

رسالة

توطئة للحصول على درجة الدكتوراه في الميكروبيولوجيا الطبية والمناعة مقدمة من

الطبيبة/ اميمـــة سيــد محمــد

ماجستير الميكروبيولوجيا الطبية والمناعة كلية الطب جامعة عين شمس تحت اشراف

د / منال محمد ياسيسن

استاذ الميكروبيولوجيا الطبية والمناعة كلية الطب جامعة عين شمس

د / نه اد محم اد سيد

استاذ الميكروبيولوجيا الطبية والمناعة كلية الطب جامعة عين شمس

د/ لمياء عبد المنعصم عصادل

استاذ مساعد الميكروبيولوجيا الطبية والمناعة كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١5

ACKNOWLEDGMENT

"First and for most thanks of Allah"

Then I would like to express my deepest gratitude and full respect and thanks to **Dr. Manal Mohamed Yassin**, Professor of medical microbiology and immunology, Faculty of medicine, Ain Shams University, for her great support, careful supervision and valuable scientific guidance.

I would like also to express my full respect and gratitude to **Dr.**Nehad Mohammed Sayed, Professor of medical microbiology and immunology,

Faculty of medicine, Ain Shams University for her continuous support,

scientific help and valuable instructions through out this work.

I would like also to express my full respect and gratitude to **Dr**. **Lamiaa Abd EL Monem Adel,** Assistant professor of medical microbiology and immunology, Faculty of medicine, Ain Shams University for her close supervision, continuous advise and encouragement.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

Omima Sayed

List of Contents

•	List of Abbreviations	II
•	List of Tables	VII
•	List of Figures	VIII
•	Introduction	1
•	Aim of the Work	3
•	Review of Literature:	
	 Hematological malignancies Bacteremia in feverish neutropenic patients Diagnosis of bacteremia in feverish neutropenic patients Management of bacteremia in feverish neutropenic patients Soluble Triggering Receptor Expressed on Myeloid cells 	162337
•	Patients and Methods	57
•	Results	70
•	Discussion	83
•	Summary	102
•	Conclusion & Recommendation	10
•	References	107
•	Arabic Summary	1

List of Abbreviations

	ACCP	American College of Chest Physicians
	ACEP	American College of Emergency Physicians
	ALL	Acute Lymphoblastic Leukemia
	AML	Acute Myeloid Leukemia
A	ANC	Absolute Neutrophil Count
	APPT	Activated Partial Phromboplastin Time
	ARDS	Acute Respiratory Distress Syndrome
	AUC	Area Under Curve
	BAL	Broncho Alveolar Lavage
Ъ	BP	Base Pair
В	BCLL	B-cell Chronic Lymphocytic Leukemia
	BSI	Blood Stream Infections
	CARD	Caspase-Recruitment Domain protein
	СВС	Complete Blood Count
	CD	Cluster Differentiation
	CDC	Centers of Diseases Control and prevention
	CFU	Colony Forming Unit
	CI	Confidence Interval
C	CLL	Chronic Lymphocytic Leukemia
	CMV	CytomegaloVirus
	CNS	Central Nervous System
	CO2	Carbon dioxide
	CPG	Cytosine- Phosphate- Guanine
	CRP	C-Reactive Protien
	CSF	Colony Stimulating Factor

	CT	Computed Tomography
	DAG	Diacylglycerol
	DAP-12	Dnax-Activation Protein-12
	DC	Dendritic Cells
D	DEAE	D i E thyl A mino E thyl
	DIC	Disseminated Intravascular Coagulopathy
	DNA	DeoxyNucleic Acid
	DNTP	Deoxy Nucleotide TriPhosphate.
	EAE	Experimental Autoimmune Encephalomyelitis
	ELISA	Enzyme Linked ImmunoSorbent Assays
	EDTA	EthyleneDiamineTetraAcetic acid
E	ERK	Extracellular signal Regulated Kinase
E	ERM	Ezrin, Radixin and Moesin
	ESBL	Extended Spectrum B-Lactamase
	ESICM	European Society of Intensive Care Medicine
	ESR	Erythrocyte Sedimentation Rate
	FA	Fanconi Anemia
F	FERM	F domain of Ezrin, Radixin and Moesin
r	FISH	Fluoresent In Situ Hybridization
	FN	Febrile Neutropenia
	G-CSF	Granulocyte Colony-Stimulating Factor
G	GM-CSF	Granulocyte Monocyte Colony-Stimulating Factor
	GRB	Growth factor Receptor Binding protein
	НСС	Hepatocellular Cancenoma
	HCL	Hairy Cell Leukemia
Н	HCV	Hepatitis C Virus
	ННМ	Humoral Hypercalcemia of Malignancy
	HIV	Human Immunodeficiency Virus

	HL	Hodjkin Lymphoma
	HLA	
		Human Leukocyte Antigen
	HSV	Herpes Simplex Viruses
	HTLV-1	Human T-lymphotropic Virus-1
	ICU	Intensive Care Unit
	IG	Immuno Globulin
	IL	Interleukin
	ITAM	Immunoreceptor Tyrosine-based Activation Motif
	ITIM	Immunoreceptor Tyrosine-based Inhibition Motif
	ITS	Internal Transcribed Spacer
	IV	Intra Venous
	IVIG	Intra Venous Immuno Globulin
J	JAK2	Janus Kinase 2
K	KPC	Klebsiella Pneumoniae Carbapenemase
L	LCBI	Laboratory-Confirmed Bloodstream Infection
L	LPS	Lipo Poly Saccaride
	MAPK	Mitogen-Activated Protein Kinase
	MBI-LCBI	Mucosal Barrier Injury Laboratory-Confirmed Bloodstream Infection
	MDS	Myelo Dysplastic Syndromes
	ML	Milli Liter
M	μL	Micro Liter
	MM	Multiple Myeloma
	MMP	Matrix Metallo-Proteinases
	MPN	Myelo Proliferative Neoplasms
	MRSA	Methicillin Resistant Staphylococcus Aureus
	MS	Multiple Sclerosis
N	N	Number

	NCCN	National Comprehensive Cancer Network
	NF-κB	Nuclear Factor κB
	NHL	Non Hodjkin Lymphoma
	NPV	Negative Predictive Value
O	O2	Oxygen
	PAMP	Pathogen-Associated Molecular Pattern
	PAO2	Arterial Oxygen Tension
	PAP	Pulmonary Alveolar Proteinosis
	PAS	Periodic Acid–Schiff
	PCR	Polymerase Chain Reaction
	PCT	Proalcitonin
	PDC	Plasmacytoid Dendritic Cell
	PG	PicoGram
	PGLYRP1	PeptidoGlycan Recognition Protein 1
	PI3K	PhosphatidylInositol 3-Kinase
	PKC	Protein Kinase C
	PMNs	PolyMorphoNuclear cells
	PNA	Peptide Nucleic Acid
	PNL	Polymorph Nuclear Leukocytes
	PLC	Phospho Lipase C
	PPV	Positive Predictive Value
	PT	Prothrombin Time
	PTH	Para Thyroid Hormone
	PTHrP	Para Thyroid Hormone related Protien
R	rRNA	Ribosomal Ribonucleic Acid
K	ROC	Receiver Operating Characteristic
S	SCCM	Society of Critical Care Medicine
S	SD	Standaed Deviation

	Siglec H	Sialic acid bindingIimmunoGlobulin-like Lectin H
	SIRS	Systemic Inflammatory Response Syndrome
	SLE	Systemic Lupus Erythrematosis
	SPS	Sodium PolyanetholeSulfonate
	Src	Sarcoma kinase
	Syk	Spleen Tyrosine Kinase
	sTLT-1	Soluble TLT-1
	sTREM	Soluble Triggering Receptor Expressed on Myeloid cells
	TAE	Tris-Acetate-EDTA
	TLR	Toll-Like Receptor
T	TLT	TREM Like Transcript
	TNF-α	Tumor Necrosis Factor – α
	TREM	Triggering Receptor Expressed on Myeloid cells
	TREM-1L	TREM-1 Ligand
	T- test	Student t- test
	US	United States
U	UTI	Urinary Tract Infection
	UV	UltraViolet
v	VRE	Vancomycin Resistant Enterococcus
V	VZV	Varicella-Zoster Virus
W	WBCs	White Blood Cells
	WHO	World Health Organization.
Z	ZAP	ζ- chain- A ssociated P rotein

* List of Tables*

No.	Title	Page
1	Laboratory-Confirmed Bloodstream Infection	31
2	Distribution of hematological malignancies	71
3	Clinical parameters of patients.	72
4	Total leukocytic count of patients	73
5	Results of subculture of positive BACTEC	76
6	Distribution of individual bacterial blood culture	77
7	Results of 16S rRNA gene detection by PCR	78
8	Results of sTREM-1 level estimation by ELISA.	80
9	BACTEC blood culture results in relation to age, ESR	81
10	BACTEC blood culture in relation to sex.	81
11	16S rRNA gene detection by PCR results in relation to	82
12	16S rRNA gene detection by PCR results in relation to sex.	82
13	Correlations between sTREM-1 level and age, ESR	83
14	sTREM-1 level results in relation to sex.	83
15	Relation between results of BACTEC blood culture	84
16	Relation between results of BACTEC blood culture	85
17	Relation between results of sTREM-1 level and PCR	86
18	Sensitivity, specificity, PPV, NPV and Accuracy	87
19	Interpretation of the ROC curve of sTREM-1	88
20	Interpretation of the ROC curve of CRP and sTREM-1	89
21	Sensitivity, specificity, PPV, NPV and Accuracy of PCR	90

* LIST OF FIGURES*

No.	Title	Page
1	TREM-1 intracellular signalling in myeloid cells	48
2	Overview of the role of TREM-1 in sepsis and LP17 role.	52
3	Bactec 9050	59
4	BACTEC TM Peds Plus/F Culture Vial	59
5	BIOTEK ELx 800	60
6	Simplified procedure of standard preparation	62
7	DNA on 2% agarose	66
8	PERKINELMER (Gene Amp PCR System 2400)	67
9	Electrophoresis set	68
10	Sex distribution among patients	70
11	C-reactive protein level in patients.	74
12	Results of BACTEC blood culture	75
13	Results of 16S rRNA gene detection by PCR	78
14	Results of PCR amplification on agarose gel	79
15	Results of PCR amplification on agarose gel	79
16	Results of sTREM-1 level by ELISA	80
17	Receiver operating characteristic curve of sTREM-1	88
18	Comparison between value of measured sTREM-1	89

INTRODUCTION

Infections are the leading cause of morbidity and mortality in neutropenic patients with hematological malignant disease. Those immunocompromised patients are at high risk of infection as a result of the underlying malignancy or due to chemotherapy (*Arzanian et al.*, 2011).

For many years, fever has been recognized as a major sign of infection in patients with hematological malignancy during neutropenia. Unfortunately many non infectious processes may be responsible for fever, and the etiology of fever in most of neutropenic patients is unknown. So diagnosis of infection in those patients is still problematic because clinical signs are often vague, and laboratory parameters are non specific (*Soreng*, 2010).

Conventional blood culture is considered the gold standard for confirmation of bacterial sepsis, but it requires a minimum of 48–72 hours and yield a positive results in only 30-40% of cases (*Heininger et al.*, 2004).

To overcome these difficulties it is necessary to advise new rapid diagnostic tests to help in early diagnosis and therefore may prevent unnecessary usage of broad-spectrum antibiotic (*Connel et al.*, 2007).

Automated blood culture is more sensitive than conventional one, and gives significantly faster results (*Yu and Black*, 2003).

Recently, polymerase chain reaction (PCR) based assays have the potential to provide an early and accurate diagnosis of bacterial pathogens

especially the culture resistant, fastidious, inactivated or slow-growing bacteria (Al Mousawi and Kadhim, 2011).

16S rRNA genes are common and conserved in all bacteria. Those universal or broad range PCR primers are considered new and effective methods of detection of bacterial pathogens in normally sterile body fluids (*Kalghatgi et al.*, 2008).

One of the new methods for detecting sepsis is Soluble Triggering Receptor Expressed on Myeloid Cells (sTREM-1) test. sTREM-1 is a superfamily of immunoglobulins produced by phagocytes, especially macrophages that are stimulated by microbial products and therefore its level will be increased when and where macrophages accumulate (*Miedema et al.*, 2010).

It has been described that the molecule (sTREM-1) can be further up regulated by stimulation of the cells by bacteria and their products. Triggering of the receptor will result in the release of pro-inflammatory cytokines and chemokines and the up regulation of surface activation markers and in that respect is thought to be amplifying inflammatory responses to bacterial infections and potentiate septic shock (*Collins et al.*, 2008).

Although sTREM-1has recently been suggested as a marker for bacterial infection, only a few studies have been published before in patients with hematological malignancy during neutropenia (*Arzanian et al.*, 2011).

AIM OF THE WORK

This study aims to evaluate the utility of measuring sTREM-1 level; compared to 16S rRNA gene detection; in early diagnosis of bacteremia in febrile neutropenic patients with hematological malignancie.

HEMATOLOGICAL MALIGNANCIES

Hematological malignancies comprise a collection of heterogeneous conditions, all originating from cells of the bone marrow and the lymphatic system. There are three major groups: leukemia, lymphoma, and plasma cell neoplasms (*Burns et al.*, 2010).

Hematological neoplasms are comparatively common, accounting for around 9% of all cancers and being the fourth most frequently diagnosed cancer in both men (after prostate, lung, and colorectum) and women (after breast, lung, and colorectum) in developed regions of the world (*Westlake*, 2009).

In 2001 the WHO produced, for the first time, a consensus classification that defined disease entities in terms of immunophenotype, genetic abnormalities and clinical features (*National Cancer Intelligence Network*, 2009; *Jemal et al.*, 2011).

Types of hematological malignancies:

<u>A-Leukemia</u> is a set of diseases of the blood or bone marrow, involving an abnormal proliferation of blood cells (*Horner et al.*, 2009)

<u>1-Acute myeloid leukemia (AML)</u>, also known as acute myelogenous leukemia or acute non lymphocytic leukemia, is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells (WBCs) that accumulate in the bone marrow and interfere with the production of normal blood cells. AML is the most common acute leukemia affecting adults, 30% of all leukemias, and its incidence increases with age (*Jemal et al.*, 2011).