

Faculty of Medicine Ain Shams University Anesthesia and Intensive Care Department

Hydroxyethyl Starch In Severe Sepsis

Essay

Submitted for Partial Fulfillment of Master Degree in Intensive Care

By

Tamer Mohamady Abuelhassan Hussein M.B.B.CH, BenhaUnivesity

Supervised by

Professor Dr. Alaa Eid Mohamed

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Dr. Dalia Abdelhameed Nasr

Assistant professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Dr. Ibrahim Mamdouh Esmat

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

صدق الله العظيم

سورة التوبة آية (105)

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Alaa Eid Mohamed**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I would like also to express my deep gratitude to **Dr. Dalia Abdelhameed Nasr**, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for her generous help, guidance and patience through all stages of this work.

I wish also to thank **Dr. Ibrahim Mamdouh Esmat**, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his great help and support in co-supervising the work.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to my wife for her unlimited help and support.

LIST OF CONTENTS

Title	Page No
1. Introduction	1
2. Aim of the work	4
3. Incidence, Terminology, Pathophysiology of seps	sis syndrome6
4. Types, Contents of Hydroxyethyl starch	29
5. Management of sepsis	44
• Proposed diagnostic markers in sepsis	46
• Updates of sepsis management in criticall	y ill patients51
• Evolution and physiologic rationale of ear	rly goal directed
therapy in critically ill patients	56
6. The effect of Hydroxyethyl starch in severe sep	osis72
7. Summary	83
8. References	87
9. Arabic summary	2

LIST OF ABBREVIATIONS

ACTH Adreno Cortico Trophic Hormone

AKI Acute Kidney Injury

AKIN Acute Kidney Injury Network

APC Activated Protein C

ARDS Adult Respiratory Distress Syndrome

ARF Acute Renal Failure

AUC Area Under the Curve

BNP B type Nantriuretic Peptide

CARS Compensatory Anti-inflammatory Response Syndrome

CHEST Crystalloid versus Hydroxyethyl Starch Trial

CL(cr) Creatinine Clearance

CMDh The Coordination Group for Mutual Recognition and Decentralised

Procedures

COP Colloid Osmotic Pressure

CORTICUS study The Corticosteroid Therapy of Septic Shock study

CRF Chronic Renal Failure

CRYSTMAS study 6%Hydroxyethylstarch(130/0.4) vs 0.9% NaCl fluid

replacement in patients with severe sepsis

CVP Central Venous Preesure

CXC Chemokines

CXCR2 Chemokines Receptor 2

DAMPs Damage Associated Molecular Patterns

DIC Disseminated Intravascular Coagulopathy

ED Emergency Department

EGDT Early Goal Directed Therapy

EMA European Medicines Agency

EPCR Endothelial Cell Protein C Receptor

FiO₂ Fraction of inspired Oxygen

GCS Glasgow Coma Scale

G-CSF Granulocyte Colony-Stimulating Factor

GD Goal Directed

GM-CSF Granulocyte Macrophage Colony-Stimulating Factor

Hct Hematocrit

HDS Hemodynamic Stabilization

HES Hydroxylethyl Starch

HR Heart Rate

ICU Intensive Care Unit

IL InterLeukin

kDa kilo Daltons

LPS Lipopolysaccharide

MAP Mean Arterial Blood Pressure

MARS Mixed Antagonistic Response Syndrome

MODS Multi Organ Dysfunction in Sepsis

MS Molar Substitution

MW Molecular Weight

NAG Beta-N-acetyl-beta-D-glucosaminidase

NaCl Sodium chloride

NGAL neutrophil gelatinase-associated lipocalin

PAMPs Pathogen-Associated Molecular Patterns

PaCO₂ Carbon Dioxide Tension in the Arterial Blood

PaO₂ Oxygen tension in the Arterial Blood

PLA₂ Phospholipase A₂

PIRO predisposition, infection, response, organ dysfunction

PRAC Pharmacovigilance Assessment Committee

PRBCs packed red blood cells

rhAPC recombinant human Activated Protein C

RIFLE score Risk, Injury, Failure, Loss, and End-stage kidney disease

RRT Renal Replacement Therapy

6S Study Scandinavian Starch for Severe Sepsis/Septic Shock

SBP Systolic Blood Pressure

SCVO2 Central venous oxygen saturation

SIRS Systemic Inflammatory Response Syndrome

SOFA score Sequential Organ Failure Assessment score

SSCG Surviving Sepsis Campaign Guidlines

STREM Soluble Triggering Receptors Expressed on Myeloid Cells

T Thrombin

TF Tissue Factor

TLR Toll-like receptors

TM Thrombodulin

TNF Tumour Necrosis Factor

TNF-RA Tumor Necrosis Factor – receptor antagonist

tPO₂ Partial pressure of oxygen at tissues

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Definition and terminology of the different stages in	n sepsis13
Table (2):	Predisposing factors for developing sepsis and septi	c shock14
Table (3):	Clinical signs of sepsis	15
Table (4):	Common signs of acute organ dysfunction in sepsis	16
Table (5):	Different types of HES	31
Table (6):	Differences between waxy maize starch-based and p	potato starch-
based HE	S	33
Table (7):	Hydroxyethyl Starch Products Comparison	41
Table (8):	Evidence-based treatment strategies of sepsis	52
Table (9):	Sepsis resuscitation bundle	54

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Etiology of Sepsis	9
Figure (2):	The inter-relation between SIRS, in	nfection and sepsis12
Figure(3):	Pathophysiology of severe sepsis an	d septic shock18
Figure(4):	Control of coagulation in normal ar	nd inflamed vasculature22
Figure (5):	Proposed model for dysregulation	of neutrophil recruitment to
bacterial i	nfection in nonpulmonary tissue ur	nder normal conditions (left)
and in sep	sis(right)	25
oxygen sat	: The early goal-directed therapy uration (ScvO2), central venous pr (MAP), hematocrit (Hct) and	ressure (CVP), mean arterial packed red blood cells

INTRODUCTION

Sepsis syndrome in adults is a disease spectrum that ranges from an inflammatory response to sepsis, severe sepsis and septic shock. Sepsis is defined as an inflammatory response with a presumed or identified source of infection. Severe sepsis is defined as sepsis with one or more organ system dysfunction. Septic shock is defined as hypotension (mean arterial pressure(MAP) <65mmHg or systolic blood pressure(SBP) <90mmHg) despite adequate fluid resuscitation (*Levy et al.*, 2003).

Mortality from sepsis ranges from 25% to 30% in severe sepsis and 40% to 70% in septic shock despite the availability of potent antibiotic. There is ongoing effort to find out and try strategies which would improve outcome of this population. It is the second leading cause of death among patients in non-coronary ICUs. Furthermore, Sepsis also substantially reduces the quality of life of those who survive (*Annane et al.*, 2003).

The risk factors of sepsis are advanced age, compromised immune status, increased use of cytotoxic, immunosuppressant agents, malignancy, diabetes mellitus, chronic renal failure, hepatitis, malnutrition, chronic illness and surgical/invasive procedures(*Daniel and RemicK*, 2007).

Treating sepsis is expensive resulting in consumption of major health care resources. With the development of newer and potent anti microbial agents, mortality due to sepsis had been markedly reduced, but remains un-acceptably high, recently various strategies like fluid therapy, low dose corticosteroids, tight glycemic control, recombinant human activated protein c (rhapc) and lung protective ventilation have shown favorable results. Furthermore it is though that combination of these strategies in the form of "bundles" can improve the outcome(*Khilnani and Hadda*, 2009).

Any identified patient within the first six hours of presenting symptoms, who has identified source of infection and hypotension or a presenting lactate

≥4mmol/L is a candidate for EGDT(Early Goal Directed Therapy). However, many cases are not so obvious, as initial presentation of septic shock may be different than later presentation of the disease process. The use of lactate as a biomarker for tissue oxygenation and perfusion has enhanced the early identification of patients with severe sepsis. Early identification allows for rapid treatment initiation with significant lower mortality benefit. Lactate ≥4mmol/L, independent of blood pressure was used as major entry criteria for the EGDT study which demonstrated a 16% mortality benefit(*Levy et al.*, *2003*).

Hydroxyethyl starches (HESs) are artificial colloid solutions that are modified natural polysaccharides with volume-expansion properties, composed of amylopectin obtained from maize or potato starch and vary in their molecular weight, hydroxyethyl moieties and the ratio of c2 to c6 substitutions. Natural starches cannot be used as plasma substitutes because circulating amylase hydrolyzes these unstable organic compounds rapidly. HESs are increasingly being used for the prevention and treatment of hypovolemia in numerous clinical situations, such as surgical, trauma, burn and intensive-care patients(Westphal et al., 2009).

For fluid therapy to be effective, it is imperative that it reaches the microcirculation to promote tissue perfusion. For this purpose, Hydroxyethyl starch (HES) solutions have been the most commonly used plasma substitutes among colloid solutions(*Boldt et al.*, 2005).

Colloids are more effective in resuscitation than crystalloids with lower volume and rarely cause peripheral edema. Several studies have shown that colloids are more efficient regimen to ensure adequate microcirculatory flow than crystalloids(*Lang et al.*, 2001).

Aim Of The Essay

The aim of this essay was to highlight the effects of hydroxyethyl starch (HES) in patients with severe sepsis and its effect on mortality rate and end-stage kidney failure in these patients.

Chapter (1)

Incidence, Terminology and Pathophysiology of Sepsis Syndrome.

