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Chapter I

Introduction

In recent years there has been a considerable development in the use
of wavelet methods in statistics. The wavelet analysis, in common with

many other mathematical and algorithmic techniques used in statistics, did

not originate from statisticians, nor with statistical applications in mind. The

wavelet transform is a synthesis of ideas emerging over many years from
different fields, notably mathematics, physics and engineering. Like Fourier
analysis, with which analogies are often drawn, wavelet methods are general
mathematical tools.

The wavelet transform can provide economical and informative
mathematical representations of many different objects of interest (e.g'.
functions, signals or images). Such representations can be obtained relatively
quickly and easily through fast algorithms which are novs'} readily available
in a variety of computer packages. As a result, waveléts are used widely, not
only by mathematicians in areas such as functional and numerical analysis,
but also by researchers in the natural sciences such as physics, chemistry and
biology, and in applied disciplines such as computer science, engineering
and econometrics. Signal processing in general, including image analysis
and data- compression, is the obvious example of an applied field of
multidisciplinary i,nterelst where the use of wavelets has proved of significant
value. Good genefal surveys of wavelet applications in that and other fields
are given, for example, in Moflet et al. (1982), Mallat (1986), Strang
(1986), Daubechies (1988), Meyer (1993), Meyer (1993), Young (1993),

- Aldroubi and Unser (1996) or Mallat (1998), Fernandez (2005), Crowley
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(2007), Ge. (2008) and Rua.(2010). Within that framework of
mﬁltidisciplinary interest, statisticians are among the more recent users of
the technique. They bring their own particular perspective to wavelet
applications in areas such as signal processing and image analysis. In
addition they have explored a range of wavelet applications which are more
exclusively statistical, including ﬁonparametric regression- and density
estimation.

In general,” wavelet is a complex valued function defined on some
space. But, we describe a wavelet as a real valued function defined on the
real line. It may be viewed as a function of time t or a function of spatial
variable x.

Wavelets can be viewed as orthonormal basis functions that are

localised in both time and frequency, with time-widths adapted to their
frequency. This means that they are able to fnodel a signal with high
frequency components, such as discontinuities, in contrast to more
traditional statistical methods for estimating an unknown function.
A second advantage comes from the fast orthogonal discrete wavelet
transform, which makes the application of wavelets available. A third
advantage is that wavelets often provide sparse and, therefore, economical
representations of functions. These key properties make wavelets an
excellent tool for statistical denoising.

Wavelet theory can be viewed as a modern improvement and
extension of the Fourier theory. Wavelet approach is also flexible in
handling irregular data sets. It can represent complex structures without the
knowledge of the underlying fuﬁction that generated the structure. It can
precisely locate the jump discontinuities, singularities (local extrema,

inflection points, cusps, etc), and isolated shocks in dynamical systems.
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Wavelet representation of a time series can be done in amanner that is
suitable for analyzing non-stationarity of the stochastic process that
generated the time series. |

Traditional noise removal methods assume the smoothness or at least
local smoothness of the underlying signal f{t) while the observed data

() + 7.(0), |
where the noise, 77(t), is not smooth.

In this thesis, chapter II introduces some  of the mathematical
notations and tools Without proofs that are useful in an understanding of
wavelet theo;'y. Fourier transform and its properties, time-frequency
analysis and A Short Notes about Time .series will be illustrated.

Chapter III introduces Review of Wavelets and Nonparametric
Regression. section 1 as introduction about modification Morlet to the
Gabor transformation, section 2 discuses continuous and discrete wavelet
transform, inverse wavelet Transform , section 3 discuses multiresolution
Analysis and Construction of Wavelets and Matrix Expression of DWT
section 4 discuses in this section, some types of wavelets are presented like
as Haar, Daubechies, and Coiflet wavelets. Section 5 Nonparametric
Regression, Kernel Estimations, Local Polynomial Fitting,  Smoothing
Spline Estimations, Orthogonal Series Estimations. Section 6, wavelet
estimation, bayesian and wavelet Shrinkage and Thresholding.

The objective of this chapter TV is to study the effect of wavelet filter
on the time series data. By using wavelet transformation and hard
thresholding technique, the ARIMA model decomposed into sum of two
ARIMA models and the relation between sum of square errors due to the
ARIMA model and sum of two ARIMA models will be discussed. . By



