

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار "خدم الأفلام بعيدا عن الغبار %٤٠-٢٠ مئوية ورطوية نسبية من ٢٠-١٠ هي درجة حرارة من ٢٥-١٥ مئوية ورطوية نسبية من ٢٥-١٥ الله To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

Cairo University

Institute of Statistical Studies & Research

Dept. of Mathematical Statistics

Nonparametric Bayesian Regression Using Wavelet Analysis

By

AYMAN ORABI ABED EL LTEEF

Supervisors

Prof. S. A. SHABAN

Dr. ELSAYED A. ELSHERPIENY

Professor of

Mathematical Statistics

The Institute of Statistical

Studies & Research

Cairo University

Associate Professor of
Mathematical Statistics
The Institute of Statistical
Studies & Research
Cairo University

C (P

Thesis submitted to the
Institute of Statistical Studies & Research
Cairo University
In partial fulfillment of the requirements
for the degree of Doctor of Philosophy in statistics

(2011)

APPROVAL SHEET

NONPARAMETRIC BAYESIAN REGRESSION USIG WAVELET ANALYSIS

Ву

AYMAN ORABI ABED EL LTEEF

This thesis for the degree of Doctor of Philosophy in statistics
from the Institute of Statistical Studies and Research
Cairo University,
And has been approved by,

Name

Signature

1. 5.19 Shohn

2. A. K. Elkholy

3. Atef M. A. Monei M

4-E.A. Elsherp. 1eg

Date

2011

ACKNONOWLEDGMENTS

I am indebted and very grateful to Professor S.A. Shaban, my supervisor for stimulating my interest in research and his guidance, support, valuable contributions, creative comments, encouragement and help in getting the needed references. He also gave his guidance, encouragement and insight.

I wish to express my deepest appreciation to Dr. Elsayed A. Elsherpieny, my supervisor for his support and encouragement

Finally, many thanks for all the members of department of mathematical statistics.

TO MY MOTHER, MY WIFE AND MY SON YAHYA

Contents

			Page
Chapter I		Introduction	1
Chapter II		Definitions and Notation	5
	(2.1)	Introduction	5
-	(2.2)	Fourier Analysis	5
		(2.2.1) FOURIER SERIES	6
		(2.2.2) FOURIER TRANSFORM	8
		(2.2.3) PROPERTIES OF THE FOURIER TRANSFORM	10
		(2.2.4) Time Shifting and Time Scaling	10
		(2.2.5) Frequency Shifting and Frequency Scaling	11
		(2.3.6) POISSON'S SUM	13
		(2.3.7) DISCRETE FOURIER TRANSFORM	14
	(2.3)	Time-Frequency Analysis	15
		(2.3.1) WINDOW FUNCTION	16
		(2.3.2) SHORT-TIME FOURIER TRANSFORM	18
		(2.3.3) Inversion Formula	19
-		(2.3.4)Time-Frequency Window	20
		(2.3.5) DISCRETE SHORT-TIME FOURIER TRANSFORM	21
		(2.3.6) Gabor Transform	22
		A Short Notes about Time series	22
	(2.4)	(2.4.1) An Autoregressive (AR) Process	23
		(2.4.2) A Moving Average (MA) Process	23
		(2.4.3) Autoregressive and Moving Average (ARMA) Process	24
Chapter III		The Wavelet Transform and Nonparametric Regression	25
	(3.1)	Introduction	25
	(3.2)	CONTINUOUS WAVELET TRANSFORM	26
		(3.2.1) Inverse Wavelet Transform	30
		(3.2.2) Time-Frequency Window	31
		(3.2.3) DISCRETE WAVELET TRANSFORM	34
		(3.2.4)WAVELET SERIES	35

	(3-3) Multiresolution Analysis and Construction of Wavelets	37			
	(3.3.1) Definition of multiresolution	39			
	(3.3.2) Matrix Expression of DWT	42			
	(3-4) Types of wavelets	44			
•	(3.4.1) Haar Wavelet Transform Via Scalar Product	44			
	(3.4.2) Haar Wavelet Inverse Transform	49			
	(3.4.3) The Daubechies Wavelet Transform	51			
	(3.4.4) The Daubechies Wavelet Transform	55			
	(3.4.5) Coiflet wavelets	58			
	(3.5) Nonparametric Regression	60			
	(3.5.1) Kernel Estimations	61			
	(3.5.2) Smoothing Spline Estimations	63			
	(3.5.3) Orthogonal Series Estimations	64			
•	(3.6) Wavelet Estimation	65			
	(3.6.1) Wavelet Shrinkage and Thresholding	66			
	(3.6.2) Wavelet Shrinkage and Thresholding Procedure	67			
•	(3.6.3) Classical Thresholding Schemes	68			
	(3.6.4) Frequentist Block Thresholding Schemes	73			
	(3.6.5) Bayesian Wavelet Shrinkage and Thresholding	74			
Chapter IV	The Wavelet Transformation and Decomposition of ARIMA Models				
	(4.1) Introduction	80			
	(4.2) Wavelet and ARIMA Model				
Chantar V		80			
Chapter V	Wavelet and ARIMA Models Analysis of Real Data (5.1) Introduction	93			
		93			
	(5.2) Analyzing ARIMA Model for Z	93			
	(5.3) Decomposing of time series Z (term by term)	94			
	(5.3.1)Analyzing ARIMA Model for X	95			
	(5.3.2) Analyzing ARIMA Model for Y	96			
•	(5.3.3) Decomposing of time series X(Posterior mean)	97			
	(5.3.4) Analyzing ARIMA Model for X1	97			
	(5.3.5) Analyzing ARIMA Model for X2	98			
	(5.3.6) decomposing of time series X(Posterior Median)	100			

		(5.3.7) Analyzing ARIMA Model for X11	100
		(5.3.8) Analyzing ARIMA Model for X22	101
	(5.4)	Decomposing of time series Z (block)	102
		(5.4.1) Analyzing ARIMA Model for U	103
		(5.4.2) Analyzing ARIMA Model for V	104
		(5.4.3) decomposing of time series U	105
		(5.4.4) Analyzing ARIMA Model for U1	105
		(5.4.5) Analyzing ARIMA Model for U1	106
Conclusions			107
Future work			108
Fables			109
Graphs			138
Appendices			149
Appendix	(I)	Program 1	150
Appendix	(II)	Program 2	166
Dafarancas			170

Chapter I

Introduction

In recent years there has been a considerable development in the use of wavelet methods in statistics. The wavelet analysis, in common with many other mathematical and algorithmic techniques used in statistics, did not originate from statisticians, nor with statistical applications in mind. The wavelet transform is a synthesis of ideas emerging over many years from different fields, notably mathematics, physics and engineering. Like Fourier analysis, with which analogies are often drawn, wavelet methods are general mathematical tools.

The wavelet transform can provide economical and informative mathematical representations of many different objects of interest (e.g. functions, signals or images). Such representations can be obtained relatively quickly and easily through fast algorithms which are now readily available in a variety of computer packages. As a result, wavelets are used widely, not only by mathematicians in areas such as functional and numerical analysis, but also by researchers in the natural sciences such as physics, chemistry and biology, and in applied disciplines such as computer science, engineering and econometrics. Signal processing in general, including image analysis and data compression, is the obvious example of an applied field of multidisciplinary interest where the use of wavelets has proved of significant value. Good general surveys of wavelet applications in that and other fields are given, for example, in Morlet et al. (1982), Mallat (1986), Strang (1986), Daubechies (1988), Meyer (1993), Meyer (1993), Young (1993), Aldroubi and Unser (1996) or Mallat (1998), Fernandez (2005), Crowley

(2007), Ge. (2008) and Rua.(2010). Within that framework of multidisciplinary interest, statisticians are among the more recent users of the technique. They bring their own particular perspective to wavelet applications in areas such as signal processing and image analysis. In addition they have explored a range of wavelet applications which are more exclusively statistical, including nonparametric regression and density estimation.

In general, wavelet is a complex valued function defined on some space. But, we describe a wavelet as a real valued function defined on the real line. It may be viewed as a function of time t or a function of spatial variable x.

Wavelets can be viewed as orthonormal basis functions that are localised in both time and frequency, with time-widths adapted to their frequency. This means that they are able to model a signal with high frequency components, such as discontinuities, in contrast to more traditional statistical methods for estimating an unknown function.

A second advantage comes from the fast orthogonal discrete wavelet transform, which makes the application of wavelets available. A third advantage is that wavelets often provide sparse and, therefore, economical representations of functions. These key properties make wavelets an excellent tool for statistical denoising.

Wavelet theory can be viewed as a modern improvement and extension of the Fourier theory. Wavelet approach is also flexible in handling irregular data sets. It can represent complex structures without the knowledge of the underlying function that generated the structure. It can precisely locate the jump discontinuities, singularities (local extrema, inflection points, cusps, etc), and isolated shocks in dynamical systems.

Wavelet representation of a time series can be done in amanner that is suitable for analyzing non-stationarity of the stochastic process that generated the time series.

Traditional noise removal methods assume the smoothness or at least local smoothness of the underlying signal f(t) while the observed data

$$f(t) + \eta(t)$$
,

where the noise, $\eta(t)$, is not smooth.

In this thesis, chapter II introduces some of the mathematical notations and tools without proofs that are useful in an understanding of wavelet theory. Fourier transform and its properties, time-frequency analysis and A Short Notes about Time series will be illustrated.

Chapter III introduces Review of Wavelets and Nonparametric Regression. section 1 as introduction about modification Morlet to the Gabor transformation, section 2 discuses continuous and discrete wavelet transform, inverse wavelet Transform, section 3 discuses multiresolution Analysis and Construction of Wavelets and Matrix Expression of DWT section 4 discuses in this section, some types of wavelets are presented like as Haar, Daubechies, and Coiflet wavelets. Section 5 Nonparametric Regression, Kernel Estimations, Local Polynomial Fitting, Smoothing Spline Estimations, Orthogonal Series Estimations. Section 6, wavelet estimation, bayesian and wavelet Shrinkage and Thresholding.

The objective of this chapter IV is to study the effect of wavelet filter on the time series data. By using wavelet transformation and hard thresholding technique, the ARIMA model decomposed into sum of two ARIMA models and the relation between sum of square errors due to the ARIMA model and sum of two ARIMA models will be discussed. By