

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

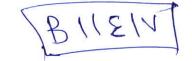
قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل



Cairo University

Institute of African Research and Studies Department of Natural Resources

EVALUATION OF CROP WATER USE EFFICIENCY FOR SOME VARIETIES OF SUDANESE AND EGYPTIAN COWPEA AND ITS RELATION TO PRODUCTIVITY

Thesis

Submitted in Partial Fulfillment of the Requirements for The Doctor Of Philosophy Degree in African Studies of Natural Resources (Soil Resources)

By

EVON KAMEL RIZK HABIB

B.Sc. Agric. Sci., Zagazig University (1984),
Diploma in African Studies, Natural Resources (1995),
M.Sc. in African Studies, Natural Resources (1999),
Institute of African Research and Studies

Cairo University

Under the Supervision of

Prof. Dr. ADEL S. EL-HASSANIN

Prof. of Soil Science, and Vice-Dean of Institute of African Research and Studies, Cairo University

Prof. Dr. MOSTAFA H. EL-DOSOUKY

Prof. and Head of Water Requirements and Meteorology Unit, Desert Research Center, Cairo, Egypt Prof. Dr. FAWZIA I. MOURSY

Prof. of Meteorology, and Head of Natural Resources Department, Institute of African Research and Studies, Cairo University

APPROVAL SHEET

EVALUATION OF CROP WATER USE EFFICIENCY FOR SOME VARIETIES OF SUDANESE AND EGYPTIAN COWPEA AND ITS RELATION TO PRODUCTIVITY

BY

EVON KAMEL RIZK HABIB

B.Sc. Agric. Sci., Zagazig University (1984), Diploma in African Studies, Natural Resources (1995), M.Sc. in African Studies, Natural Resources (1999), Institute of African Research and Studies Cairo University

This thesis for Ph.D. degree has been

A 1	nı	nr	OV	PA	by	•
	и,		U	Cu	U	۰

Prof. Dr. SAAD EL-DEMERDASHE .S. S. Lemerdosh...

Prof. of Soils and Chairman of Water Resources and Desert Soils
Division, Desert Research Center.

Prof. Dr. ADEL SAAD EL-HASSANIN.

Prof. of Soil Science, and Vice-Dean of Institute
of African Research and Studies, Cairo University.

Prof. of Soils and Head of Water Requirements

and Meteorology Unit, Desert Research Center.

Date of examination: / / 2002.

Title: "Evaluation of crop water use efficiency for some varieties of Sudanese and Egyptian cowpea and its relation to productivity"

The current work was carried out in the Agricultural Experimental Station of the Desert Research Center at Maryut, Alexandria Governorate, Egypt, during two seasons 2000 and 2001.

The study intends to evaluate the influence of soil moisture deficit, irrigation water amounts and plant density population and their interaction on growth characters, yield and yield components, actual evapotranspiration, water use efficiency, water economy, crop coefficient, stress coefficient and irrigation efficiency of Sudanese and Egyptian cowpea grown under calcareous soil conditions.

Experimental treatments:

The treatments include: Three soil moisture deficit from available soil water: (D1 = 30 % & D2 = 50 % and D3 = 70 %), three quantities of irrigation water calculated by using: (Q1, Priestley & Taylor model, Q2, Penman – Monteith equation and Q3, Radiation method) and three plant density population treatments: (PD1 = 100 % (low), PD2 = 110 % (medium) and PD3 = 120 % (high).

Four replicates.

The obtained results can be summarized as follows:

A) Effect of soil moisture deficit:

- 1- Highly significant effect and significant differences are found in number of pods per plant, number of seeds per pod, seeds weight per pod, seeds weight per plant, 1000-seed weight, plant moisture content %, straw yield, seed yield, total fresh yield and total dry yield, and significant differences on all growth characters, yield and yield components, water use efficiency and water economy of Sudanese and Egyptian cowpea during the two seasons, the common magnitude is in the order: D₂ > D₁ > D₃.
- 2- Highly significant effect and significant differences are observed in actual evapotranspiration (ETa), crop coefficient (Kc), stress coefficient (Ks) and irrigation efficiency (Ea) of Sudanese and Egyptian cowpea during the two seasons. In brief, (ETa), (Kc), (Ks) and (Ea) decreased with increasing soil moisture deficit, the common magnitude is in the order: D₁ > D₂ > D₃. of Sudanese and Egyptian cowpea during the two seasons.

B) Effect of irrigation water amounts:

- 1- Highly significant effect, significant differences and a significant increase are found in all growth characters, yield and yield components, water use efficiency, water economy, crop coefficient, stress coefficient and irrigation efficiency of Sudanese and Egyptian cowpea by decreasing the amounts of irrigation water applied. The magnitude is in the order: Q1 > Q2 > Q3 during the two seasons.
- 2- Highly significant effect and significant differences are remarkable in actual evapotranspiration of Sudanese and Egyptian cowpea during the two seasons, but non significant differences between Q1 and Q2. However, a significant increase by increasing the amounts of irrigation water applied. In brief, the common magnitude is in the order: Q3 > Q1 > Q2.

C) Effect of plant densities:

- 1. Highly significant effect, significant differences and highly significant increase are apparent in all growth characters, yield and yield components, water use efficiency and water economy of Sudanese and Egyptian cowpea during the two seasons. The magnitude is in the order: PD₁ > PD₂ > PD₃.
- 2. A significant increases by decreasing plant densities were obtained for number of pods per plant, number of seeds per pod, seeds weight per pod, seeds weight per plant, 1000-seed weight and seed yield, the magnitude is in the order: PD₁ > PD₂ > PD₃ for the two seasons of Sudanese cowpea. Moreover, a significant increases by increasing plant densities were obtained for straw yield, total fresh yield and total dry yield, the magnitude is in the order: PD₃ > PD₂ > PD₁ for the two seasons of Sudanese cowpea. On the other hand, for total dry yield, the magnitude is in the order: PD₂ > PD₁ > PD₃ for the two seasons of Egyptian cowpea.
- 3. Highly significant effect and significant differences are found in actual evapotranspiration, crop coefficient, stress coefficient and irrigation efficiency of Sudanese and Egyptian cowpea in the two seasons and increased with increasing plants density, the magnitude is in the order: PD₃ > PD₂ > PD₁.

Cairo University

Institute of African Research and Studies

Department of Natural Reseurces

Title: "Evaluation of crop water use efficiency for some varieties of Sudanese and Egyptian cowpea and its relation to productivity"

Name

: Evon Kamel Rizk Habib.

Degree

: Ph.D. in African Studies of Natural Resources.

Supervisors

- (1) Prof. Dr. Adel S. El-Hassanin,
- (2) Prof. Dr. Fawzia I. Moursy,
- (3) Prof. Dr. Mostafa H. El-Dosouky.

ABSTRACT

Key words: Irrigation water amounts, soil moisture deficit, plant density population, actual evapotranspiration, water use efficiency, water economy, crop coefficient, stress coefficient, irrigation efficiency, Sudanese and Egyptian cowpea, growth parameters, yield and yield components.

The current work was carried out during two seasons 2000 and 2001 in the Agricultural Experimental Station of the Desert Research Center at Maryut, Alexandria Governorate, Egypt.

The study intends to evaluate the influence of soil moisture deficit, irrigation water amounts and plant density population and their interaction on growth characters, yield and yield components, actual evapotranspiration, water use efficiency, water economy, crop coefficient, stress coefficient and irrigation efficiency of Sudanese and Egyptian cowpea grown under calcareous soil conditions.

Experimental treatments:

The treatments include: Three soil moisture deficits from available soil water: (D1 = 30 % & D2 = 50 % and D3 = 70 %), three quantities of irrigation water calculated by using: (Q1, Priestley & Taylor model, Q2, Penman – Monteith equation and Q3, Radiation method) and three plant density population treatments: <math>(PD1 = 100 % (low), PD2 = 110 % (medium) and PD3 = 120 % (high). Four replicates.

The obtained results can be summarized as follows:

A) Effect of soil moisture deficit:

- 1- Highly significant effect and significant differences are found in number of pods per plant, number of seeds per pod, seeds weight per pod, seeds weight per plant, 1000-seed weight, plant moisture content %, straw yield, seed yield, total fresh yield and total dry yield, and significant differences on all growth characters, yield and yield components, water use efficiency and water economy of Sudanese and Egyptian cowpea during the two seasons, the common magnitude is in the order: D₂ > D₁ > D₃.
- 2- Highly significant effect and significant differences are observed in actual evapotranspiration (ETa), crop coefficient (Kc), stress coefficient (Ks) and irrigation efficiency (Ea) of Sudanese and Egyptian cowpea during the two seasons. In brief, (ETa), (Kc), (Ks) and (Ea) decreased with increasing soil moisture deficit, the common magnitude is in the order: D₁ > D₂ > D₃. of Sudanese and Egyptian cowpea during the two seasons.

B) Effect of irrigation water amounts:

1- Highly significant effect, significant differences and a significant increase are found in all growth characters, yield and yield components, water use efficiency, water economy, crop

- coefficient, stress coefficient and irrigation efficiency of Sudanese and Egyptian cowpea by decreasing the amounts of irrigation water applied. The magnitude is in the order: Q1 > O2 > O3 during the two seasons.
- 2- Highly significant effect and significant differences are remarkable in actual evapotranspiration of Sudanese and Egyptian cowpea during the two seasons, but non significant differences between Q1 and Q2. However, a significant increase is associated with increasing the amounts of irrigation water applied. In brief, the common magnitude is in the order: Q3 > Q1 > Q2.

C) Effect of plant densities:

- 1. Highly significant effect, significant differences and highly significant increase are apparent in all growth characters, yield and yield components, water use efficiency and water economy of Sudanese and Egyptian cowpea during the two seasons. The magnitude is in the order: PD₁ > PD₂ > PD₃.
- 2. A significant increases for number of pods per plant, number of seeds per pod, seeds weight per pod, seeds weight per plant, 1000-seed weight and seed yield were obtained by decreasing plant densities, the magnitude is in the order: PD₁ > PD₂ > PD₃ for the two seasons of Sudanese cowpea. Moreover, a significant increases by increasing plant densities were obtained for straw yield, total fresh yield and total dry yield, the magnitude is in the order: PD₃ > PD₂ > PD₁ for the two seasons of Sudanese cowpea. On the other hand, for total dry yield, the magnitude is in the order: PD₂ > PD₁ > PD₃ for the two seasons of Egyptian cowpea.
- 3. Highly significant effect and significant differences are found in actual evapotranspiration, crop coefficient, stress coefficient and irrigation efficiency of Sudanese and Egyptian cowpea in the two seasons and increased with increasing plants density, the magnitude is in the order: PD₃ > PD₂ > PD₁.

D) Conclusions and Recommendations:

From the previous findings, one can conclude that:

- 1. Irrigation at medium soil moisture deficit (D₂=50%) from available soil water and use (Priestly & Taylor model, Q1) or (Penman-Monteith equation, Q2) to calculate irrigation water amounts with addition of 60 % over (20 % leaching requirements and 40 % irrigation system efficiency losses) with rate low plant densities (PD₁=100%), to obtain the highest water use efficiency, of Sudanese and Egyptian cowpea at the same conditions should be carefully evaluated in the studied area.
- 2. The economical level of irrigation water depends on the unit price of both irrigation water and produced yield. To obtain the highest yield together with irrigation water saving and highest irrigation efficiency, it is advised to apply 592.08 mm. (2486.76 m³/fed.) for Sudanese cowpea and 487.68 mm (2048.28 m³/fed) for Egyptian cowpea at sites similar to that of the experiment.
- 3. It is clear that using the combination of the traditional quantities of irrigation water calculated from (Priestley & Taylor model, Q1) with low plant densities (PD₁=100%) under medium soil moisture deficit (D₂=50%) gave the best values of Investment Ratio (IR) either with Sudanese cowpea or Egyptian cowpea in Maryut area and also at sites similar to that of the experiment.
- 4. The new in this study is to combine economical and stress approaches of irrigation water and management through calculation of the investment ratio (IR), stress coefficient (Ks), irrigation efficiency (Ea) and irrigation scheduling of Sudanese and Egyptian cowpea crops under different managements.

ACKNOWLEDGEMENTS

The authoress would like to express her thanks and gratitude to **Prof. Dr.**Adel S. El-Hassanin, Prof. of Soil Science and Vice-Dean of the Institute of African Research and Studies, Cairo University, Prof. Dr. Mostafa H. El-Dosouky, Prof. of Soil Science and Head of Water Requirements and Meteorology Unit, Desert Research Center and Prof. Dr. Fawzia I. Moursy; Prof. of Meteorology and Head of Natural Resources Department, Institute of African Research and Studies, Cairo University for their sincere help, guidance and supervision throughout all stages of this work.

Special thanks are also due to **Prof. Dr. Saad El-Demerdashe**, Prof. of Soils and Chairman of Water Resources and Desert Soils Division, Desert Research Center for his valuable help and sincere guidance and encouragement.

Special thanks are due to **Prof. Dr. Edrees A. Abdel-Hamid,** Head of Soil Physics and Chemistry Department, Desert Research Center for his continuous encouragement in the study and his valuable help throughout of this work.

The authoress is also indebted to **Dr. Gama! A.A. Dahy**, and **Dr. Samy H. Seidhom**, Researchers of Water Requirements Unit, Soil Physics and Chemistry Department, Water Resources and Desert Soils Division, Desert Research Center for their continuous and encouragement.

The authoress seize this opportunity to thank all the staff members of the Natural Resources Department, Institute of African Research and Studies, Cairo University, for courses taught and facilities provided.

Thanks are extended to all colleagues and staff members of Soils Division, Desert Research Center for their help and encouragements throughout the whole course of this study.

To all who have helped me in carrying out this work the authoress expresses her sincere thanks.

CONTENTS

Pag	e
TITLE SHEET	
APPROVAL SHEET	
ABSTRACT	
ACKNOWLEDGEMENTS	
CONTENTS	I
LIST OF TABLES	i
LIST OF FIGURES	iii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Yield and growth parameters:	3
2.2.1. Yield-moisture stress relationship:	3
2.2.2. Plant density population:	7
2.2. Water requirements :	9
2.2.1. Meteorological conditions :	10
2.2.2. Evapotranspiration process :	11
2.2.2.1. Evaporation	11
2.2.2.2. Transpiration	12
2.2.2.3. Evapotranspiration (ET)	12
2.2.2.4. Factors affecting evapotranspiration	12
2.2.3. Reference crop evapotranspiration (ETo):	13
2.2.4. Crop evapotranspiration (ETc)	16
2.2.4.1. Methods of determination of crop evapotranspiration:	17
A) Crop evapotranspiration under standard conditions:	17
B) Crop evapotranspiration under non-standard conditions:.	17
I. Water stress conditions:	18
1. ETc under soil water stress conditions:	18
2. Water stress coefficient (Ks _w)	18
2.2.5. Actual evapotranspiration :	20
2.2.5.1. Seasonal evapotranspiration:	22

a) Evapotranspiration or consumptive use :	23
b) Deep percolation :	23
2.2.5.2. Annual evapotranspiration, ET:	23
2.2.6. Leaching requirement :	25
2.2.7. Net irrigation requirements :	25
2.3. Crop water use efficiency: (WUE)	26
2.4. Crop water economy:	28
2.5. Crop coefficient (Kc):	29
2.6. Management and environmental conditions:	30
2.6.1. Management induced environmental stress:	31
2.6.2. Stress coefficient: (Ks)	.31
2.7. Irrigation efficiency: (Ea)	32
3. MATERIALS AND METHODS	33
4. <u>RESULTS AND DISCUSSION</u>	48
4.1. Yield:	48
4.1.1. Effect of soil moisture deficit on growth characters,	
yield and yield components of cowpea:	48
4.1.2. Effect of irrigation water amounts on growth characters,	
yield and yield components of cowpea:	58
4.1.3. Effect of plant densities on growth characters,	
yield and yield components of cowpea:	59
4.1.4. Effect of interaction between treatments on growth	
characters, yield and yield components of cowpea:	61
4.2. Actual evapotranspiration: (ETa)	67
4.2.1. Effect of soil moisture deficit on actual	
evapotranspiration of cowpea:	. 67
4.2.2. Effect of irrigation water amounts on actual	
evapotranspiration of cowpea:	71
4.2.3. Effect of plant densities on actual	
evapotranspiration of cowpea:	72

4.2.4. Effect of interaction between treatments	
on actual evapotranspiration of cowpea:	
4.3. Water use efficiency of cowpea crop: (W.U.E.)75	
4.3.1. Effect of soil moisture deficit on water	
use efficiency of cowpea:75	
4.3.2. Effect of irrigation water amounts on water	
use efficiency of cowpea:	
4.3.3. Effect of plant densities on water	
use efficiency of cowpea:	
4.3.4. Effect of interaction between treatments	
on water use efficiency of cowpea:	
4.4. Water economy of cowpea crop: (W. Eco.)	
4.4.1. Effect of soil moisture deficit on	
water economy of cowpea:83	
4.4.2. Effect of irrigation water amounts on	
water economy of cowpea:86	
4.4.3. Effect of plant densities on	
water economy of cowpea: 87	
4.4.4. Effect of interaction between treatments	
on water economy of cowpea: 87	
4.4.5. Economical assessment: 90	
4.5. Crop coefficient of cowpea crop: (Kc)92	
4.5.1. Effect of soil moisture deficit on	
crop coefficient of cowpea:92	
4.5.2. Effect of irrigation water amounts on	
crop coefficient of cowpea:95)
4.5.3. Effect of plant densities on	
crop coefficient of cowpea:	
4.5.4. Effect of interaction between treatments	
on crop coefficient of cowpea:96	

4.6. Stress coefficient of cowpea crop: (Ks)
4.6.1. Effect of soil moisture deficit on
stress coefficient of cowpea:100
4.6.2. Effect of irrigation water amounts on
stress coefficient of cowpea:
4.6.3. Effect of plant densities on
stress coefficient of cowpea:103
4.6.4. Effect of interaction between treatments
on stress coefficient of cowpea:104
4.7. Irrigation efficiency of cowpea crop: (Ea)
4.7.1. Effect of soil moisture deficit on irrigation
efficiency of cowpea:107
4.7.2. Effect of irrigation water amounts on irrigation
efficiency of cowpea:
4.7.3. Effect of plant densities on irrigation
efficiency of cowpea:120
4.7.4. Effect of interaction between treatments
on irrigation efficiency of cowpea:111
5. SUMMARY AND CONCLUSIONS
6. APPENDIX (IRRIGATION SCHEDULING)
7. <u>REFERENCES</u>
R. ARABIC SUMMARY