Determination of T cell lymphocytes population in urinary bladder biopsy material from schistosomiasis haematobium Egyptian patients

Thesis

Submitted in partial fulfillment of Master degree in Parasitology

By

Enas Ali El Saftawy

Demonstrator of Parasitology, Faculty of Medicine, Cairo University

Supervised by

Prof. Dr.Amany Ahmed Abd El-Aal

Professor of Medical Parasitology Department
Faculty of Medicine
Cairo University

Ass. Prof. Dr. Ashraf Mohamed Emran

Assistant Professor of Urosurgery
Faculty of Medicine
Cairo University

Dr. Abeer Said Alantably

Lecturer of Medical Parasitology
Faculty of Medicine
Cairo University

2014

ABSTRAT

The aim of the present study was to investigate in situ- expression of different markers related to T cell population Th1 (STAT4), Th2 (GATA3), Treg.(FOXP3) and T cytotoxic (CD8) in Egyptian patients suffering from chronic complicated schistosomiasis haematobium infection. using real time quantitative photocytometric analysis. On the other hand, to spot on the dominating T cell upon which the subsequent events had been built. Due to ethical consideration, the present work was applied only on tissue biopsies of the selected cases after cystectomy. Therefore, the existing research was built-in 29 schistosomiasis patients complicated with bladder cance. Cases in the present study were exposed to more or less continuous stimulation of *Schistosoma* egg antigen, either due to lack of treatment, failure of treatment or repeated exposure to infection. The cases in the current work were reported to be poorly controlled by unbalanced Th1/Th2 in which Th2 was dominated as proved by the significant higher expression level of GATA3 (Th2 marker) over STAT4 (Th1marker). In attempt to regain the control, Treg. (FOXP3) level was increased significantly, however, failed to dowen-regulate Th2(GATA3) which continue to expand resulting in more downregulation of Th1 (STAT4). Instead, the relation between Th1 (STAT4) and T cytotoxic (CD8) was forcibly limited by the high expression level of Treg. (FOXP3) resulting in loss of their power in defending the host against both parasite and carcinogenic changes. These correlations give more clarification for the immune evasion process played by the parasite and tumor cells under the supervision of Tregulatory cells. In addition to the critical role of FOXP3 in manipulating STAT4 and CD8 in favor of malignant progression.

Key Words: Schistosomiasis *haematobium*- T cell population - quantitative photocytometric.

ACKNOWLEDGEMENT

First, I would like to express my sincerest gratitude and gratefulness to **Allah** who bless and fill me with hope, faith and patience and blessed me with Dr. Amany Abdel Aal and Dr. Abeer Said that enable me to carry out all this work.

My deep gratitude and appreciation, great thanks to Prof. Dr. Amany Ahmed Abdel-Aal, Professor of Parasitology Department: Faculty of Medicine, Cairo University, for her generous help, encouragement and continuous support throughout this work.

I am greatly honored to express my thanks and gratitude to Dr. Abeer Saed El-Antably, Lecturer of Parasitology, Faculty of Medicine, Cairo University, for guidance, great help encouragement, constructive criticism and her creative support throughout the whole work up of this thesis.

I would like to express thanks and gratitude to Dr. Ashraf Mohamed Emran, Assistant Professor of Urosurgery, Faculty of Medicine, Cairo University, for his valuable help and advice to accomplish this work.

I am very much indebted to Prof. Dr. Mona Mahmoud, Head of the Parsitological Dept., Faculty of Medicine, Cairo University for her care and support.

I am greatly honored to express my thanks and gratitude to Prof. Dr. Ibrahim R. Bayoumy Professor of Parasitology, Theodor Bilharz Research Institute, for his guidance and valuable advice.

I am very much indebted to Dr. Nabila Salah Hassan, Professor of Histochemistry and Dr. Manal Badawi, Assisstant Professor of Pathology,

Pathology department, National Research Center, Giza, for their kind support, valuable advices and indispensable help throughout the work of this thesis.

Last but not least, I would like to thank my family for their great help and support and every person who helped me during this work especially my dear colleagues in Parasitology Department, Faculty of Medicine, Cairo University, for their great help in this work.

LIST OF ABBREVIATIONS

AIDS Acquired immunodeficiency syndrome BAC Bilharzia associated bladder cancer B.C. Before Christ BCG Bacillus Calmette–Guérin	
BAC Bilharzia associated bladder cancer B.C. Before Christ	
B.C. Before Christ	
BCL2 B-celllymphoma2 Referred to as "C57 black 6", "C57" or "black 6" (standard	
abbreviation: B6), is a common inbred strain of laboratory	
mouse	
CBA/J inbred mouse strain is used to study granulomatous	
experimental	
C Celsius	
CBC Complete blood picture	
CCA Circulating cathodic antigen.	
CD Cluster of differentiation	
CMI Cell mediated immunity	
CT Computed tomography.	
DAB 3,3' Diaminobenzidine	
DNA Double stranded nucleic acid	
E2 Estradiol	
ECG Electrocardiography	
ELISA Enzyme linked immunosorbant assay	
ER Estrogen receptor	
FCR fragment crystallizable region receptor	
F Fahrenheit	
FOXP-3 Forkhead box Foxp-3	
GATA Family of transcription factors characterized by their ability	to to
bind to the DNA sequence	
H&E Haematoxylin and Eosin	
HIV Human immune deficiency	
IgE Immunoglobulin E	
IgG Immunogloblin G	
IgM Immunogloblin M	
IHC Immunohistochemistry	
IHA Indirect haemagglutination test	
IFN-γ Interferon-gamma	
IL Interleukin	
JAK Janus kinase	

KS	Katayama syndrome	
KDa	Kilo Dalton	
LOH	Loss of heterozygosity	
LT-HSC	long term repopulating hematopoietic stem cells	
MHC	Major histocompatibility complex	
mAbs	Monoclonal antibodies	
MPGN	Membranoproliferative glomerulonephritis	
MRI	Magnetic resonance imaging	
NSA-BC	Non Schistosoma associated-bladder cancer	
P-value	Probability value	
r	Pearson correlation	
RBC	Red blood cells	
ROS	Reactive oxygen species	
RNOS	Reactive nitrogen oxide species	
SA-BC	Schistosoma associated-bladder cancer	
SCC	Squamous cell carcinoma	
SEA	Soluble egg antigens	
S.haematobium	Schistosoma haematobium	
Sh-SEA	S. haematobium soluble egg antigen	
Sh28GST	Schistosoma 28 kDa glutathione-S-transferase	
SM22	Smooth Muscle-Specific Protein	
Spp.	Species	
STAT	Signal transducer and activator of transcription	
TCC	Transitional cell carcinoma	
TCR	Tcell receptor	
Thelper lymphocyte	T helper lymphocytes	
TIL	Tumor-infiltrating lymphocytes	
TNF-β	Tumor necrosis factor beta	
Treg	T regulatory cells	
UTI	Urinary tract infection	
μg/ml	Microgram per milliliter	

LIST OF FIGURES

Figure	Title	Page
Figure (1)	Theodor Maximilian Bilharz.	
Figure (2)	Global distribution of schistosomiasis <i>haematobium</i> .	
Figure (3)	The major components of the <i>Schistosoma</i> induced	27
_	granulomas and the cytokines that drive this response.	
Figure (4)	Kinetics of the Th1/Th2 response to <i>Schistosoma</i> infection.	28
Figure (5)	Immunohistochemistry and target antigen detection methods	38
Figure (6)	TCR is composed of Alpha chain and Beta chain.	40
Figure (7)	The interaction between TCR/MHC-peptide complex, and the	41
	role of TCR co-receptors.	
Figure (8)	STAT protein phosphorylation	42
Figure (9)	GATA family are transcription factors.	44
Figure (10)	Ultravision Protein Block	55
Figure (11)	Monoclonal antibodies related to different markers.	56
Figure (12)	Ready to use secondary antibody	57
Figure (13)	The principal of Immunohistochemical staining technique	58
Figure (14)	Ultravision detection system (Chromogen Substrate). 5	
Figure (15)	Leica DM-LB microscope	61
Figure (16)	Sex distribution among the study group	64
Figure (17)	Age distribution among the study groups.	65
Figure (18)	Geographical distribution among the study group	
Figure (19)	Previous anti-bilharzial therapy among the 29 cases	
Figure (20)	The clinical manifestations among the 29 cases.	
Figure (21)	The complications related to long standing schistosomiasis	70
Figure (22)	Type of tumour in the 29 cases.	71
Figure (23)	Section shows scattered calcified degenerate Schistosoma	73
_	haematobium eggs in between cancer cells.	
Figure (24)	Loose granuloma formation surrounding a Schistosoma	74
	haematobium eggs .	
Figure (25)	Multiple loose granulomas surrounding degenerate, calcified	74
	Schistosoma haematobium eggs .	
Figure (26)	Schistosoma haematobium egg with the characteristic	75
	terminally located spine.	
Figure (27)	Disfigured peripheral parts of the sections are excluded from	76
	the analysis.	
Figure (28)	Immunohistochemical expression of STAT marker	77
Figure (29)	Immunohistochemical expression of GATA marker	78

List Of Figures

Figure (30)	Immunohistochemical expression of FOX marker	79
Figure (31)	Immunohistochemical expression of CD8 marker	80
Figure (32)	Area percentage of different markers	81
Figure (33)	Pattern of area percentage of different markers	82
Figure (34)	Digital estimation of area percentage or OD values	84
Figure (35)	Individual OD values of different markers	84
Figure (36)	Correlation between FOXP3, STAT4 and CD8	85

LIST OF TABLES

Table number		Page
Table (1)	Data sheet of schistosomiasis <i>haematobium</i> patients	48
Table (2)	sex distribution among patients with schistosomiasis	63
	haematobium	
Table (3)	Age distribution among patients with schistosomiasis	64
	haematobium	
Table (4)	Geographical distribution of schistosomiasis	65
	haematobium patients.	
Table (5)	Previous anti-bilharzial therapy among the 29 cases	66
Table (6)	Summary of patient data	68
Table (7)	Percentages of erythrocyturia and leucocyturia among	72
	active and chronic age groups.	
Table (8)	Different values (median, maximum and minimum) of	81
	area percentage of different markers	
Table (9)	The insignificant correlation between tumor markers and	82
	tumor type, tumor grade, age and sex	
Table (10)	The correlations between different markers	85

Table of Contents

Introduction	1
Aim of Work	3
Review of literature	4
Taxonomic classification of Schistosoma haematobium	5
Geographical Distribution of S. Haematobium	6
Epidemiology of Schistosomiasis in Egypt	7
Clinical manifestation of schistosomiasis haematobium	8
Immunopathological lesions on top of schistosomiasis	10
Factors affecting immunogenicity of Schistosoma egg	17
Immune Response to Schistosomes	21
Immunopathogenesis of urinary schistosomiasis	24
Kinetics of the Th1/Th2 response to Schistosoma infection	26
Carcinoma and schistosomiasis	30
Diagnosis of schistosomiasis	31
Immunohistochemistry	36
Biomarkers of Tumor infiltrating lymphocytes (TIL)	38
Patients and Methods	46
Results	63

Table Of Contents

Discussion	87
Conclusion	103
Recommendations	105
Summary	106
References	109
Arabic Summary	122Error! Bookmark not defined.

INTRODUCTION

Schistosomal infections affect more than 240 million people worldwide and *S. haematobium*, accounts for nearly half of that number. The ancient Egyptians, through settling in and cultivating the Nile valley, were among the first to contract the disease and the main symptom, hematuria, was mentioned in Egyptian papyri (1500-1800 B.C.) (**Moustafa** *et al.*, **1999**).

Although the symptoms are varied, the bulk of the morbidity and mortality of urogenital schistosomiasis can be ultimately attributed to the host immune response against *Schistosoma* eggs deposited within the walls of the urinary tract. Subsequently, lead to urinary tract inflammation, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. In fact, the annual deaths are about 150,000 due to urogenital schistosomiasis-induced complications makes *S. haematobium* one of the most lethal worms worldwide (**Fu** *et al.*, **2012**).

Several immunological field studies supported the idea that individuals living in endemic areas have different immune responses, making them either resistant or susceptible to infection with different levels of complication. (**Mduluza** *et al.*, **2001**).

The granulomatous reactions in urinary schistosomiasis are T helper cells dependent and the T cytotoxic cells to parasites are activated by the T helper cells. Therefore, these cellular factors participate in the immune responses to urinary schistosomiasis. However, there is no evidence concerning the exact role of these immune cells in long standing complicated schistosomiasis *haematobium* and despite the global burden of urogenital schistosomiasis, there remains little known about the basic mechanisms underlying the immuno-pathophysiology of this

parasitic disease. This is primarily due to the lack of an experimentally tractable animal model and limited research on human cases (Airfax et al., 2012).

AIM OF WORK

The present work aimed to study the expression level of different T cell populations in biopsy materials taken from Egyptian patients suffering from chronic complicated schistosomiasis *haematobium* using specific imunohistochemical markers.

Objectives

- Study the cellular and immunochemical patterns of T cell populations T-helper 1 (Th1), T-helper 2(Th2), T regulatory (Treg.) and T cytotoxic cells, using specific markers, GATA3, STAT4, FOXP3 and CD8 respectively.
- Recognize on the dominating T cell upon which the subsequent events had been built.
- Analysis of different patterns using digital real- time image morphocytometry.
- Compare the different patterns of different markers in relation to Parsitological findings in tissue specimes.
- o Evaluation of the usefulness of T cell imunohistochemical markers in detecting susceptibility of different human cases for complication.

REVIEW OF LITERATURE

Historical note:

Schistosoma haematobium was discovered by a German physician **Theodore Maximilian Bilharz** (figure 1) in 1851 during autopsy at Kasr El Ainy hospital. *S. haematobium* was first diagnosed by Ruffer in 1910 who recovered calcified *schistosome* eggs from two Egyptian mummies (**El-Zayadi, 2004**).

Figure 1: Theodor Maximilian Bilharz, 1825-1862.

Haematuria, the main sign of urinary bilharziasis was recorded in the Kahun papyrus 1900 B.C. as "â-a-â" disease (Nmorsi et al., 2007). In 1864, Harley used the generic name Bilharzia for a blood-fluke occurring in South Africa. In 1864, both Harley and Cobold held the view that a mollusk acted as intermediate host. All workers failed to discover the host until Miyairi and Suzuki, in 1913, first found that a mollusk (Katayama nosophora) was the vector of Schistosoma japonicum. Few years later, Miyagawa verified their findings (Sacko et al., 2011).