Assessment of Vertebrobasilar Insufficiency using duplex ultrasonography and neurophysiological tools

Thesis Submitted in partial fulfillment of the MD degree in Clinical neurophysiology

Investigator

Radwa Mahmoud Azmy Mohammed (M.B., B.Ch, M.Sc in clinical neurophysiology)

Faculty of medicine Cairo University

Supervisors

Prof. Dr. Saher El Sayed Hashem

(Principal supervisor)

Professor of Neurology Faculty of medicine Cairo University

Prof. Dr. Seyam Saeed Ahmed

Professor of Clinical Neurophysiology Faculty of medicine Cairo University

Dr. Soha Talaat Hamed

Assistant Professor of Radiology Faculty of medicine Cairo University

> Faculty of Medicine Cairo University 2008

To My Family

Abstract

This study was carried on was conducted on two groups; 30 patients presenting with cerebrovascular insufficiency within the territory of the vertebrobasilar system and 20 normal control subjects. Of the patients group, 22 presented with established stroke and 8 with TIAs.

Duplex sonography showed positive findings in 60% of our patients. Color-coded ultrasonography allows detection of vertebral artery (VA) hypoplasia, site of occlusion and vertebrobasilar hemodynamic assessment. The extracranial VA was occluded in 26.7% and hypoplastic in 6.7 % of our patients. VA was occluded distally (intracranially) in 23.3 % of our patients.

Blink reflex and Brainstem auditory evoked potential studies have proved to be sensitive methods of detection of posterior circulation territory dysfunction, with 73.3% and 63.3% agreement with MRA respectively.

Keywords: vertebrobasilar insufficiency, color-coded duplex, TCCS, evoked potentials.

Acknowledgement

First and foremost, I would like to express my sincerest gratitude and gratefulness to Allah, who fills me with faith, hope, patience, ambition, and desire to finish this work.

I would like to express my deepest gratitude and appreciation to Professor Dr. Saher Hashem, Professor of Neurology department, Cairo University for giving me the privilege of working under his supervision and for his valuable advice, faithful guidance, precious time, and continuous support.

I am deeply indebted to Professor Dr. Seyam Saeed, Professor of Clinical Neurophysiology, Cairo University, for his most generous help, valuable advice and support throughout this work.

I would like to express my deep gratitude to Professor Dr. Soha Talaat, Assistant Professor of Radiodiagnosis, Cairo University, for her kind supervision and encouragement.

I would like also to express my deep gratitude to Professor Dr. Ann Ali Abdel Kader Professor and head of Clinical Neurophysiology unit, Cairo University for her kindness, encouragement, and continuous support,

My profound gratitude and appreciation goes to Professor Dr. Fouad Abd Allah, Assistant Professor of Neurology, Cairo University, for his fruitful teaching, generous guidance and precious time.

I would like to express my deep gratitude to Professor Dr. Ahmed Abu Mousa, Assistant Professor of Neurology, for his continous support and valuable advice

I would like also to thank my professors, friends, and colleagues in the clinical neurophysiology unit and neurology departments for their help and encouragement.

It is with greatest pride and pleasure that I thank my beloved family, w	ith
whom I have been blessed and honored, and to whom I owe everything.	

Radwa Azmy

Table of Contents

INTRODUCTION AND AIM OF WORK	1
REVIEW OF LITERATURE	
Cerebrovascular Anatomy	4
Epidemiology of Stroke	16
Pathophysiology of Ischaemia	18
Vertebrobasilar insufficiency	27
Technical Aspects of Insonation	58
Vertebrobasilar insonation	67
Echo enhancement	84
Applications of TCCS	87
Electrophysiology of Posteroir Circulation	96
SUBJECTS AND METHODS	117
RESULTS	128
CASE PRESENTATION	158
DISCUSSION	180
SUMMARY	191
CONCLUSION	193
RECOMMENDATIONS	194
REFERENCES	195
APPENDIX	217
ARABIC SUMMARY	225

List of Abbreviations

A1: Pre-communicating segment of anterior cerebral artery

A2: Post-communicating segment of anterior cerebral artery

ACA: Anterior cerebral artery

AcoA: Anterior communicating artery

ADMA: Asymmetric dimethylarginine

AICA: Anterior inferior cerebellar artery

ASICs: Acid-sensing ion channels

AVMs: Arteriovenous malformations

BA: Basilar artery

BAEPs: Brain-stem auditory evoked potentials

B mode: Brightness mode

BR: Blink reflex

CaMKII: Ca²⁺-calmodulin-dependent protein kinase II

CAVATAS: The Carotid And Vertebral Artery Transluminal Angioplasty Study

CBF: Cerebral blood flow

CDU: Color doppler ultrasonography

CI: First segment of internal carotid artery

CRP: C-reactive protien

CT: Computed tomography

CTA: Computed tomography angiography

CVAs: Cerebral vascular accidents

CW: Circle of Willis

DESs: Drug-eluting stents

DLPN: Dorsolateral pontine nucleus

DSA: Digital subtraction angiography.

ENG: Electronystagmography

FTP: Fetal-type PCA

FV: Flow volume

I₀: Intensity threshold

ICA: Internal carotid artery

IL: Interleukin

ICP: Intracranial pressure

INO: Internuclear ophthalmoplegia

ISVT: Interstitial nucleus of the spinal trigeminal tract

LDL: Low density lipoprotein

LT: Left

LTM: Low-threshold mechanoreceptive

MCA: Middle cerebral artery

MEPs: motor evoked potentials

MHz: Motor hemiparesis

MHz: Mega hertz

MIR: Masseter inhibitory reflex

MLAEPs: Middle-latency auditory evoked potentials

M mode: Motion mode

MPO: Myeloperoxidase

MRA: Magnetic resonance angiography

MRI: Magnetic resonance imaging

NMDA: N-methyl D- aspartate

NS: Nociceptive-specific

OA: Ophthalmic artery

P1: Pre-communicating segment of posterior cerebral artery

P2: Post-communicating segment of posterior cerebral artery

PAPP-A: Pregnancy-associated plasma protein A

PCA: Posterior cerebral artery

PoCA: Posterior communicating artery

PcTX: Picrotoxin

PICA: Posterior inferior cerebellar artery

PMD: Power motion mode Doppler

PPRF: Paramedian pontine reticular formation

PSN: Principal sensory nucleus

PSV: Peak systolic velocity

PTX-3: Pentraxin 3

R1: Early response of the blink reflex

R2c: Contralateral late response of the blink reflex

R2i: Ipsilateral late response of the blink reflex

RT: Right

SA: Subarachnoid hemorrhage

SCA: Superior cerebellar artery

sCD40L: Inflammatory cytokine soluble CD40L

SD: Standard deviation

SEPs: Somatosensory evoked potentials

SP: Supression period

SP1: Early masseter inhibitory reflex

SP2: Late masseter inhibitory reflex

STN: Spinal trigeminal nucleus

SNc: Subnucleus caudalis

SNi: Subnucleus interpolaris

SNo: Subnucleus oralis

TAV: Time-averaged velocity

TCCS: Transcranial color-coded sonography

TCD: Transcranial doppler

TIAs: Transient ischemic attacks

TICA: Terminal internal carotid artery

TNF: Tumor necrosis factor

TSTN: Trigeminal spinal tract and nucleus

US: Ultrasonography

VA: Vertebral artery

VAD: Vertebral arterial dissection

VBD: Vertebrobasilar disorders

VBI: Vertebrobasilar insufficiency

VICA: Velocity of internal carotid artery

VMCA: Velocity of middle cerebral artery

VN sens: Trigeminal sensory root

VN mot: Trigeminal motor root

VOR: Vestibulo-ocular reflex

VORC: Vestibulo-ocular reflex cancellation

VSCIs: Very small cerebellar infarcts

WASID: Warfarin- Aspirin Symptomatic Intracranial Disease

WDR: Wide dynamic range

List of Figures

Figure 1: Arterial Supply of the Brain Stem	
Figure 2: The brainstem viewed from its ventral surface	8
Figure 3: Vessels Forming the Circle of Willis	
Figure 4: Scheme of anatomic variations of the anterior part of the CW	11
Figure 5: Scheme of anatomic variations of the posterior part of the CW	12
Figure 6: Schematic template showing arterial territories of mesencephalon	15
Figure 7: Relation of the VA to the cervical spine	
Figure 8: Two Types of Vertebrobasilar Infarcts.	35
Figure 9: Isolated mesencephalic infarcts.	41
Figure 10: Distal territory mesencephalic infarcts	
Figure 11: Middle territory mesencephalic infarcts	43
Figure 12: Proximal territory mesencephalic infarct.	43
Figure 13: The natural acoustical windows	
Figure 14: The transtemporal (acoustical) window	62
Figure 15: Sonograms show blood velocity spectra of PCAs	65
Figure 16: Transcranial color-coded ultrasonogram of the circle of Willis	66
Figure 17: Doppler sonogram of a normal VA	75
Figure 18: A "pre-bunny" vertebral artery Doppler waveform	77
Figure 19: A "bunny" waveform	77
Figure 20: Bidirectional vertebral artery Doppler waveform.	78
Figure 21: Retrograde vertebral artery Doppler waveform.	78
Figure 22: Tardus vertebral artery (VA) Doppler waveform	79
Figure 23: High resistance vertebral artery Doppler waveform	80
Figure 24: Transcranial color-coded ultrasonogram of the vertebrobasilar arteries	
Figure 25: Transforaminal TCCS using an echo-enhancing agent.	86
Figure 26: Schematic representation of the blink reflex pathways	98
Figure 27: Schematic representation of various blink reflex response abnormalities	100
Figure 28: Masseter inhibitory reflex.	105
Figure 29: Masseter inhibitory reflex (MIR)	
Figure 30: Scheme of brainstem reflexes	108
Figure 31: Click Stimulation Responses in EMG Recorded from Master Muscles	111
Figure 32: Electro-oculographic recordings	113
Figure 33: Philips HDI-5000 ultrasound equipment	120
Figure 34: Total male/female ratio in study groups	
Figure 35: Distribution of Possilble risk factors among study groups	
Figure 36: Distribution of clinical syndromes among study groups	
Figure 37: Extracranial CCS showing a normal RT VA between the shadows of the tranve	erse
processes of the	
Figure 38: Doppler sonogram of a normal extracranial RT VA	
Figure 39: Normal spectral analysis of VA and vien	
Figure 40: Subocciptal TCCS of the vertebrobasilar arteries	
Figure 41: Doppler spectral analysis of the VA and BA	
Figure 42: Transtemporal TCCS of the anterior circulation.	
Figure 43: TCCS showing normal pulsed Doppler of LT P1	
Figure 44: TCCS showing normal pulsed Doppler of P2	162

Figure 45: MRA showing normal circle of Willis	. 163
Figure 46a-g: Case no.15	164
Figure 47a-g: Case no.7	168
Figure 48a-f: Case no.2	174
Figure 49a-c: Case no.8	

List of Tables

Table 1: Posterior circulation stroke (Adams et al., 1997)	44
Table 2: Normal Depth, Direction, and Mean Flow Velocities at Assumed Zero Degree Ar	igle of
Insonation of the Arteries of the Circle of Willis (Alexandrov et al., 2007)	61
Table 3: Total male/female ratio in study groups	
Table 4: Mean age and standard deviation in study groups	129
Table 5: Distribution of possible risk factors among study groups	
Table 6: Distribution of clinical manifestations among study groups	133
Table 7: Recurrence of symptoms in study subgroups	134
Table 8: Positive MRI in study groups	135
Table 9: Multiplicity of MRI lesions in study groups	136
Table 10: Site of MRI lesions in group IA	136
Table 11: Positive MRA in study Subgroups	137
Table 12: Blink reflex in study subgroups	139
Table 13: BAEPs in study subgroups	140
Table 14: VEP in study subgroups	141
Table 15: IMT (cm) among study groups	142
Table 16: PSV (cm/s) of the carotid arteries among the study groups	
Table 17: Carotid artery stenosis in subgroups IA and IB	
Table 18: Adequacy of the temporal windows among males and females in study groups	144
Table 19: PSV of intracranial vessels in study groups	145
Table 20: Doppler waveform in right VA in groups IA and IB	147
Table 21: Doppler waveform in left VA in groups IA and IB	
Table 22: Hemodynamic parameters of both VAs in study groups	149
Table 23: RI of both VAs in groups I and II	149
Table 24: Adequacy of the suboccipital window in males and females	
Table 25: Hemodynamic parameters of basilar and VAs in study groups	151
Table 26: Correlating the age with MRA	151
Table 27: Correlating HTN with MRA	152
Table 28: Correlating cardiac disease with MRA	152
Table 29: Correlating DM with MRA	153
Table 30: Correlating the age with Duplex	153
Table 31: Correlating HTN with Duplex	
Table 32: Correlating Cardiac disease with Duplex	
Table 33: Correlating DM with Duplex	155
Table 34: Correlating smoking with increased IMT	
Table 35: Correlating BR with MRA	156
Table 36: Correlating BAEP with MRA	
Table 37: Correlating Duplex with MRA	157

Introduction

Cerebrovascular disease occupies second place amongst the causes of mortality in the world (*Yepes*, 2001). Atherosclerotic occlusive disease of the vertebral artery affects a significant proportion of patients with cerebrovascular disease and can cause significant morbidity and mortality despite maximal medical therapy (*Wehman et al.*, 2004).

Approximately one-quarter of ischaemic strokes involve the posterior or vertebrobasilar circulation. Stenosis of the vertebral artery can occur in either its extra- or intracranial portions, and may account for up to 20% of posterior circulation ischaemic strokes. Stenotic lesions, particularly at the origin of the vertebral artery, are not uncommon (*Cloud and Markus*, 2003). Obstructive lesions of proximal vertebral arteries probably occur in about 30% of stroke patients (*De Bray et al.*, 2001). The diagnosis of VBI is a clinical challenge because its manifestations are subjective and difficult to quantify (*Kizilkilic et al.*, 2004).

Sonography is a noninvasive technique; however the consequences of erroneous diagnosis must be taken into account. It could be argued that transcranial color-coded duplex sonography (TCCS) scanners are more expansive and less portable than conventional TCD scanners, but intensive care units are now equipped with sophisticated sonographic machines for general purposes, so adding transcranial probes increases the cost only a little (*Krejza and Baumgartner*, 2004).

TCCS, in contrast to "blind" conventional transcranial Doppler sonography (TCD), enables a sonographer to outline the intracranial bony and parenchymal structures, visualize the basal cerebral arteries in color, and measure angle-

corrected blood flow velocities in a specific site of the artery in question. This makes measurements of flow velocity more valid than those obtained with conventional TCD (*Krejza*, 2004).

Simultaneous insonation of intracranial parenchymal structures by B-mode and cerebral artery blood flow by color-coded flow imaging allows visualization of vertebrobasilar arteries directly and continuously. Measurements of vessel length, as well as the hemodynamic assessment, are possible (*Schulte-Altedorneburg et al.*, 2000).

Ultrasound of the extracranial vertebral artery (VA) is a valuable technique, providing direct or indirect evidence of abnormal VA circulation, including lesions that lie proximal or distal to the VA itself. It is possible to insonate the V1 and V2 sections of the VA with relative ease in most patients. Transcranial color-coded duplex US can confirm intracranial occlusion of the V4 segment (*Stolz et al.*, 2002).

Transnuchal TCCS allows visualization of the proximal two thirds of the BA length. A tortuous BA might confound an accurate measurement, and variations of the superior bifurcation of BA may make it harder to identify distal segments of the BA transnuchally. This confirms a rule of sonography that the transtemporal insonation of the origin of both posterior cerebral arteries is an unavoidable step for a reliable judgment of the vertebrobasilar system (*Schulte-Altedorneburg et al.*, 2000).

Evoked potentials have proved to be a sensitive method of detection of even slight cerebral dysfunction. Brainstem auditory evoked potentials (BAEPs) is a non-invasive and reliable electrophysiological method to assess the function of brainstem structures traversed by auditory pathyways. BAEP data provide a functional evaluation of the brain-stem and some cranial nerves, which is lacking in imaging studies. Functional investigations may be useful in the long-term