Advanced MRI Techniques in Differentiating Purulent From High Grade Neoplastic Processes of the Brain

Essay

Submitted for Partial Fulfillment of Master Degree in radio diagnosis

By

MARWA ABD ELWAHED KHAMES

M.B.B; CH. Cairo University

Resident of radiodaignosis

Supervisors

PROF. SUZAN BAHEEG ALI MOHAMED

Professor of radiodiagnosis
Faculty of Medicine, Ain Shams University

DR. MOHAMED SOBHI HASSAN

Lecturer of radiodaignosis

Faculty of Medicine, Ain Shams University

Faculty of Medicine

AIN SHAMS University

2010

استخدام التقنيات الجديدة في التصوير بالرنين المغناطيسي في التشخيص التفريقي بين اورام المخ و امراضة الصديدية

رسالة توطئه للحصول على درجة الماجستير في الأشعة التشخصية مقدمة من

الطبيبة / مروة عبد الواحد خميس عبد الواحد بكالوريوس الطب و الجراحة جامعة القاهرة

تعبد إشرافه الأستاذة الدكتورة / سوزان بهيج علي محمد

أستاذ الأشعة التشخصية

كلية الطبع - جامعة غين شمس

الدكتور/ محمد صبحي حسن

مدرس الأشعة التشخصية كلية الطبع- جامعة عبن شمس

كلية الطب

جامعة غين شمس

2010

١

Summary

Introduction

Intracranial tumors are a significant health problem. The annual incidence of primary and secondary central nervous system neoplasms ranges from 10 to 17 per 100,000 persons.

Inflammatory diseases of the central nervous system (CNS) are playing an increasingly important role in the clinical practice of neuroradiology: Infections of the CNS frequently involve immunocompromised patients and are being accompanied increasingly more with the employment of innovative and aggressive immunosuppressive and immunomodulatory therapies. Noninfectious inflammation, such as multiple sclerosis, accounts for about 10% of all neurological diseases

Imaging plays an integral role in intracranial tumor management.

Magnetic resonance (MR) imaging in particular has emerged as the imaging modality most frequently used to evaluate intracranial tumors, and it continues to have an ever-expanding, multifaceted role.

The diagnosis of brain abscess is usually made based on the clinical presentation and imaging findings. Typically, contrast-enhanced MRI reveals ring enhancement in the capsule stage and solid enhancement in the cerebritis stage of brain abscesses. The abscess may be multiloculated and/or multifocal. Brain abscess and cerebritis may therefore mimic a brain tumour, such as a high-grade glioma or metastasis on conventional imaging

Acknowledgement

First and foremost, I feel always indebted to Allah, the most kind and the most merciful.

I would like to express my great thanks and gratitude to Prof. Dr. **SUZAN BAHEEG ALI**Professor of Radiodaignosis, Faculty of Medicine, *Ain shams* University, for her generous help and continuous encouragement. She provided me with invaluable comments, knowledge, experience and hand necessary for achieving this work.

I would like to express my deepest thanks and gratitude to Dr. **MOHAMED SOBHI HASSAN**Lecturer of radiodaignosis faculty of medicine, *Ain shams* university for his support, guidance and valuable remarks.

Finally I am thankful to my family especially my husband for their support throughout my life and this work.

MARWA ABD ELWAHED KHAMES

Title Page

•	Introduction & aim of
the work9	
•	Anatomy of the brain
13	
•	Physics of diffusion and
spectroscopy45	
o Physics of diffusion	46
0	Physics of
spectroscopy	53
•	Pathology of Brain
Abscess and brain tumors66	
0	Pathology of Brain
Abscess67	
0	Pathology of Brain
tumors76	
•	Imaging of Brain
Abscess	
0	Diffusion weighted
imaging of Brain Abscess105	
0	MR Spectroscopy of
Brain Abscess101	
•	Imaging of the Brain
Tumors111	
0	Diffusion weighted
imaging119	

	0	MR Spectroscopy of	
	Brain Tumors	127	
•		Differentiating high	
	grade malignant from inflammatory brain lesion	ns135.	
•		Summary	
	143		
•		References	
•		Arabic summary	

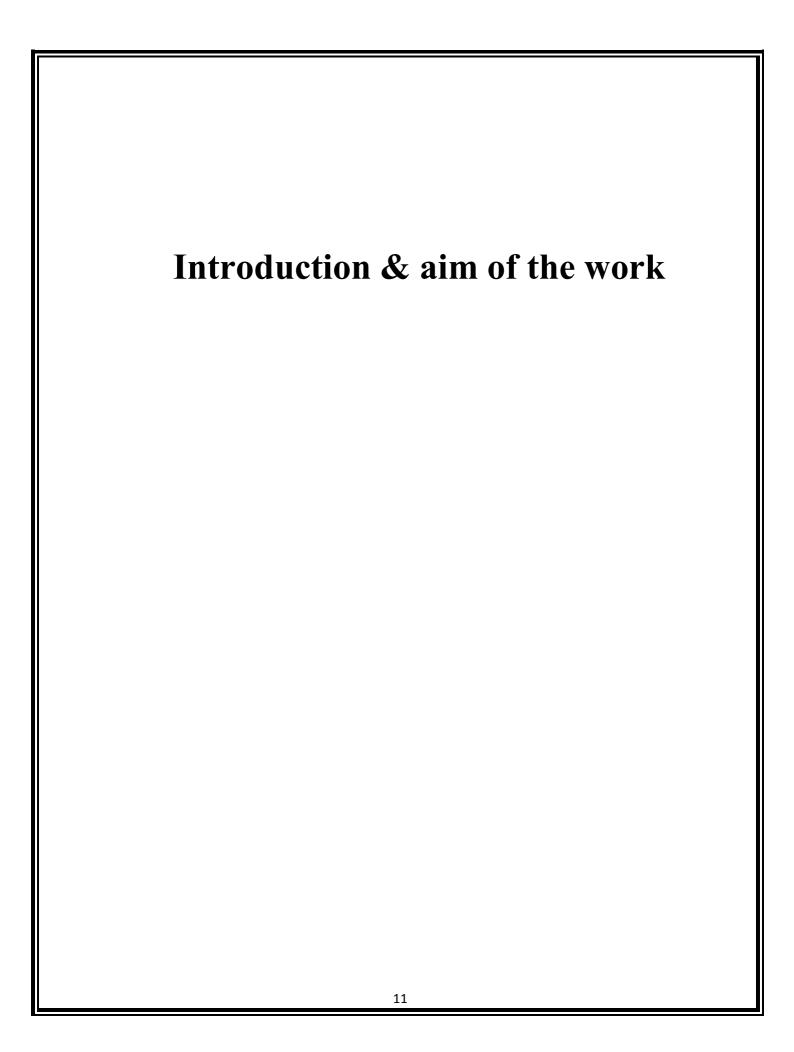
List of diagrams

<u>Diagram</u>	<u>Description</u>	<u>Page</u>
Diag. 1	Diagram of meningels of the brain	16
Diag. 2	Diagram A typical pulse sequence for diffusion imaging	48
Diag. 3	Demonstration curve of normal MRI spectroscopy of the brain at long TE 270	57
Diag. 4	Diagram of A & B MR Spectroscpy before and after Shimming	58
Diag. 5	Normal brain proton –MR spectra (A) with long TE (270 msec), (B) short TE (20 msec)	59

List of figures

Number	Description	Page
1	Axial coronal and sagital dissection images of the brain	22
2	Diagrams of MRI Images	25
3	A and B Sagital Section Of The Brain and The Brain Stem	34
4	Conventional angiography Diagrams	43
5	Photos demonstrating pathological specimens of brain abscesses	74

6	Brain MRI CASE 1 Pyogenic abscess with calcified wall.	100
7	Brain MRI CASE 2 Pyogenic abscess secondary to a skin abscess	102
8	<u>Brain MRI CASE 3</u> <u>Left cerebellar abscess with combined medical and surgical management</u>	104
9	Brain MRI CASE 4 Diffusion imaging in a case of cerebral abscess	106
10	Brain MRI CASE 5 A 7-year-old male with chronic streptococcal infection presents with severe headaches	107
11	. <u>Brain MRI CASE 6</u> Left frontal abscess in a 57-year-old man.	109
12	Brain MRI CASE 7 Glioblastoma multiforme in a 69-year-old female with left-side weakness.	123
13	Brain MRI CASE 8 Glioblastoma multiforme in an 80-year-old female with personality change	124
14	Brain MRI CASE 9 Fast growing GBM with low Cr	126
15	Brain MRI CASE 10 Brain metastasis. Axial postcontrast T1-weighted and T2-weighted	130
16	Brain MRI CASE11 A 47 year-old human immunodeficiency virus (HIV)- positive male patient with headache and nausea	133
17	Brain MRI CASE12 A 27-year-old male patient with B-cell lymphoma.	134


List of abbreviations

MRI	Magnetic resonance imaging
WHO	World Health Organization
CNS	central nervous system
СТ	Computed tomography
DWI	Diffusion weighted imaging
CSF	cerebrospinal fluid
ADC	apparent diffusion coefficient
TE	time evolution
MRS	magnetic resonance spectroscopy
cMRI	conventional magnetic resonance imaging
RF	radio-frequency (RF) pulse
FID	free induction decay (FID)
PPM	parts per million (ppm)
HMRS	proton MR spectroscopy (HMRS)
NAA	N-acetyle aspartate (NAA
Cr	creatine (Cr)
VOI	volume of interest (VOI)
TE	TE (time to echo)
TR	time to resonance

Cho	Choline (Cho)
Lip	Lipids (Lip)
GIx	Glutamine & glutamate (Glx)
MIns	Myo-inositol (MIns)
STEAM	Stimulated echo acquisition mode (STEAM)
PRESS	Point resolved spectroscopy(PRESS)
SV	Single Voxel (SV)
MV	multivoxel (MV)
CSI	chemical shift imaging (CSI)
SI	spectroscopic imaging (SI)

(2D)	two dimensional (2D)
(2D)	three dimensional (3D)
T	Tesla (T)
Lac	Lactate (Lac)
AVM	artero venous malformation
FLAR	Fluid attenuation inversion recovery
MPNST	Malignant peripheral nerve sheath tumor (MPNST)
GBM	glioblastomamultiforme (GBM)

LGGS	low-grade gliomas (LGGs)
AAS	Anaplastic Astrocytoma
GC	Gliomatosis Cerebri
PCNSL	Primary Central Nervous SystemLymphoma (PCNSL)
AIDS	acquired immunodeficiency syndrome (AIDS)
EBV	Epstein–Barr virus (EBV)
(T1wI),	spin-echo T1-weighted image (T1WI)
(PDWI),	proton density-weighted image (PDWI)
(T2WI),	T2-weighted image (T2WI)
Gd	gadolinium (Gd)

Introduction

Intracranial tumors are a significant health problem. The annual incidence of primary and secondary central nervous system neoplasms ranges from 10 to 17 per 100,000 persons. Imaging plays an integral role in intracranial tumor management. Magnetic resonance (MR) imaging in particular has emerged as the imaging modality most frequently used to evaluate intracranial tumors, and it continues to have an ever-expanding, multifaceted role. (Riyadh, et al 2006)

The original classification scheme of brain tumor proposed by Bailey and Cushing in the 1920s serves as the foundation for the histological categorization of all brain tumors currently proposed by the World Health Organization (WHO). Basically, the WHO classification scheme recognizes seven major categories based on the cell of origin. These include tumors of neuroepithelial cells (primarily glial cells composed of astrocytes, oligodendrocytes, ependymal cells, and choroid plexus); tumors of the nerve sheath (composed of Schwann cells and fibroblasts); tumors of the meninges (composed of meningothelial, mesenchymal, and melanocytic tumors); tumors of lymphoproliferative cells; tumors of germ cell origin; tumors of the sella; and metastatic disease. Each of these cells of origin give rise to a particular tumor type. (Brant, et al. 2007)

Inflammatory diseases of the central nervous system (CNS) are playing an increasingly important role in the clinical practice of neuroradiology:

Infections of the CNS frequently involve immunocompromised patients and are being accompanied increasingly more with the employment of innovative and aggressive immunosuppressive and immunomodulatory therapies. Noninfectious inflammation, such as multiple sclerosis, accounts for about 10% of all neurological diseases. (*Baert, et al 2009*)

The diagnosis of brain abscess is usually made based on the clinical presentation and imaging findings. Typically, contrast-enhanced MRI reveals ring enhancement in the capsule stage and solid enhancement in the cerebritis stage of brain abscesses. The abscess may be multiloculated and/or multifocal. Brain abscess and cerebritis may therefore mimic a brain tumour, such as a high-grade glioma or metastasis on conventional imaging. (*Noguchi, et al 1999*)

Brain abscesses and brain tumors may have similar clinical presentations. For example, only 50% brain abscess patients have fever, which could be masked by corticosteroid therapy. Also, the differential diagnosis of brain abscesses versus cystic or necrotic tumors may be difficult based on computed tomography (CT) or magnetic resonance (MR) imaging findings. However, the strategies of management for abscess and neoplasm are very different, and it is especially imperative to have a correct diagnosis before any surgical intervention of cystic brain lesions. The MR special techniques, diffusion-weighted imaging (DWI) and proton (1H) MR spectroscopy, are useful as additional diagnostic modalities for differentiating brain abscesses from cystic or necrotic brain tumors. DWI