

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات


يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار هي درجة حرارة من ١٥-١٥ مئوية ورطوية نسبية من ٢٠-٤٠ في درجة حرارة من ١٥-١٥ مئوية ورطوية نسبية من ٢٠-١٠ ثالثانية من ٢٥-١٥ الله عند المعادة ال

Q Months of the second of the العلومات ASÜNET

FINITE-DIFFERENCE METHODS AND SIMILARITY SOLUTIONS FOR SOLVING SOME PROBLEMS IN FLUID DYNAMICS

A Thesis
Submitted to The Faculty of Science
Assiut University
In Partial Fulfillment for
The Degree of Master of Science
(Mathematics)

Ву

Hany Al-Badrey Hosham

B.Sc. (1998) Al-Azhar University

Supervised by

Prof. Dr. Ismial A. Hassanien

Professor of Mathematics Faculty of Science Assiut University

Dr. Abdel-Hav A. Salama

Associate Prof. of Mathematics
Faculty of Science
Assiut University

Department of Mathematics, Faculty of Science, Assiut University 2004

Approval Sheet

Finite-Difference Methods and Similarity

Solving Some Problems in Fluid Dynamics

Solutions for

Hany Al-Badrey Hosham

Candidate:

Thesis Title:

(D.D. Salama

Degree:	Master of Science (Mathematics)					
Courses	Fluids	Dynamics-	Hydrodynar	nics-Special	Course-	
Attended:	Optional	Course-	Numerical	Treatment-l	Numerical	
	Analysis-	Workshop				
		Supervisors				
1- Prof. Ismial A. Hassanien (Prof.			f. of Mathematics, Faculty of			
		Scie	nce, Assiut U	niversity)		
2- Dr. Abdel-Hay A. Salama (As			sociate Prof. of Mathematics, Faculty			
		of S	cience, Assiut	University)		
	Exa	mination (Committee			
External:	1					
1-Prof. Adel Abdel-Rahman Mejahed		Prof. of Ap	Prof. of Applied Mathematics,			
()		Faculty of	Faculty of Engineering, Cairo		
•			University.	,		
2-Prof. Abdel-Lateef El-Sadek Aly Hassian			Prof. of Ma	Prof. of Mathematics, Faculty of		
()		Engineerin	Engineering, Cairo University.		
Internal:						
3-Dr. Abdel-Hay A	Salama		Associate Prof.	of Mathemati	ics, Faculty	

(H.M. El-Haworky

Prof. Hassan M. El-Hawary

Vice-Dean for Graduate Studies and Research

of Science, Assiut University.

Nomenclature

Nomenclature

A	B.	C'	S.	m,	n.	r.
₽ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D,	$\overline{}$	э,	ш,	77,	٠,

 a_1, a_2

 $T_0, U_0, K's, \alpha, \beta, \gamma$ Real constants.

Essential parameters.

Pr Prandtl number.

Re Reynolds number.

x Distance along the surface.

y Distance normal to the surface.

t Time.

u Velocity in x-direction.

v Velocity in y-direction.

Temperature.

U Potential velocity.

 U^* Reference velocity.

F Dimensionless velocity.

E Total specific energy

q Heat flux vector

G Dimensionless microrotation.

L Differential operator.

f Body force

V Control volume

S Orientable surface

P Pressure

Greek symbols

η Dimensionless coordinate.

O Dimensionless temperature.

 Ψ Stream function.

μ Dynamic viscosity coefficient.

V Kinematic viscosity coefficient.

2 Second coefficient of viscosity

 ρ Density of the fluid.

 σ Stress tensor

ε Singular perturbation parameter.

Subscripts

w Surface Conditions.

 ∞ Conditions far a way form the surface.

Contents

Contents

		1 age
Ackn	owledgements	i
Abst	ract	
CHA	PTER 1: Introduction	
1.1	Preliminaries	. 1
1.2	Conservation of mass	. 2
1.3	Conservation of momentum	3
1.4	Conservation of energy	5
1.5	The dimensionless Navier-Stokes equations	6
1.6	Boundary layer approximation	7
1.7	A survey of methods for determining similarity	
	transformations	9
1.8	The s-parameter group method	14
1.9	Isovector method	21
1.10	Nonclassical method	21
1.11	Nonclassical symmetries and direct reduction methods	21
1.12	Finite difference methods for the partial differential	
	equations	22
СНА	PTER 2: Fourth-Order Finite Difference Met	hod
	for Solving Burgers' Equation	
2.1	Introduction	27
2.2	Method of solution	29
2.3	Stability analysis of the finite difference method	36
2.4	Convergence analysis	37
2.5	Numerical experiments and discussions	40
2.6	Conclusion	43
∠.0	Concrusion	73

CHAPTER 3: Analytical and Numerical Solutions of
Generalized Burgers' Equation Via
Buckingham's Pi-Theorem

3.1	Introduction	. 60
3.2	The reduction to ordinary differential equations	. 62
3.3	Analytical solutions for some ordinary differential	
	equations	66
3.4	Numerical method for ordinary differential equations	70
3.5	Numerical Results	73
3.6	Conclusion	. 75
CHA	PTER 4: Finite Difference Approach for Unstea	ıdy
	Boundary Layer Flow Near a Stagnat	ion
	Point Via Group Theoretic Method	
4.1	Introduction	89
4.2	Mathematical analysis	. 90
4.3	The group of transformations	91
4.4	The invariance analysis	92
4.5	Complete sets of absolute invariant	95
4.6	Derivation of distinct complete sets	97
4.7	The reduction to ordinary differential equations	104
4.8	Concluding remarks on similarity solutions	113
4.9	Numerical solution for ordinary differential equations	114
4.10	Numerical results and discussions	121
Refe	rences	135
Arahi	e summary	

Acknowledgements

Acknowledgements

In the name of ALLAH, the Beneficent, the Merciful. All praise is due to ALLAH, the Lord of the worlds. My great thanks are due to ALLAH Almighty for giving me inspiration and ability to introduce this work.

My sincere thanks to **Prof. Dr. Ismial A. Hassanien**, for his direct supervision of the work, planning of the study, efforts in revising and reading the thesis and the many precious facilities he generously offered during the development of this work.

I would like to express my deepest gratitude and sincere thanks to my **Prof. Dr. Salah E. EL-Gendi**, Professor of Mathematics, Faculty of Science, Assiut University for his excellent guidance and helpful discussions.

I am also grateful to **Dr. Abdel-Hay A. Salama**, for his kind supervision and guidance, valuable discussion during the work and many suggestions, efforts in revising and reading the thesis.

I wish to express my great thanks to **Prof. Dr. Ahmad A. Alam**, Head of the Department of Mathematics, Faculty of Science, Assiut University.

I wish to express my great thanks to Prof. Dr. Hassan M. EL-Hawary Vice Dean for Higher Studies and Research, Faculty of Science, Assiut University.

Finally, I wish to express my deep thanks and gratitude to my parents, my brothers and my wife for their encouragement during the preparation of this thesis