PLATELET MICROPARTICLES IN TYPE 1 DIABETES MELLITUS

Thesis

Submitted for partial fulfillment of master degree in Pediatrics

By

Hosam Adly Kamel Abd El Hamed

M.B., B.Ch. Faculty of Medicine, Ain shams University, 2004

Under supervision of

Prof. Dr. Mona Abd El Kader Salem

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Amira Abd El-Monem Adly

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Eman Abdel Rahman Ismail

Consultant of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2014

First and foremost I fell always indebted to AIIAH, the most kind and most merciful.

I would like to express my deepest thanks to **Prof. Dr. Mona Abd El Kader Salem,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her constant guidance and encouragement.

A grateful appreciation to Ass. Prof. Dr Amira Abd El-Monem Adly, Assistant Professor of Pediatrics, Faculty of Medicine Ain Shams University, for her great support.

I would like to express my extreme gratitude to Or. Iman abdel Rahman, Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her encouragement and valuable remarks throughout this study.

I would like to express my thanks to all of the patients who participated in the study.

Hosam Adly Kamel

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Abstract	X
Introduction	1
Aim of the Work	3
Review of Literature	
Diabetes Mellitus	4
 Etiologic classification of diabetes melli 	itus4
o Epidemiology of type 1 diabetes	7
 Risk factors and etiology of type 1 diabe 	etes7
 Pathogenesis and Pathophysiology of ty 1 diabetes 	-
o Diagnosis	
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-	
 Diabetes care in children and adolescer type 1 diabetes 	
Microparticles	53
o Definition of MPs	54
o Clinical importance of MPs	55
o MPs formation	56
 Detection of MPs 	59

List of Contents (Cont...)

Title	Page No.
o Clearance of MPs	65
o Functions of MPs	66
o Procoagulant MPs	68
o Effects of MPs on endothelial biology	70
o Role of MPs in hemostasis	71
Subjects and Methods	102
Results	109
Discussion	124
Summary	133
Conclusion	135
Recommendations	136
References	137
Arabic Summary	

List of Tables

Table No.	Title P	age No.
Table (1):	Genetic susceptibility to type 1 diabe	
Table (2):	Summary of studies investigat association of environmental factors type-1 diabetes.	in
Table (3):	Criteria for the diagnosis of diabetes:	25
Table (4):	Correlation of A1C with average gluc A1C (%)	
Table (5):	Complications of type 1 diabetes	28
Table (6):	Admission biochemical data in patie who have hyperglycemic hyperosmosyndrome and diabetic ketoacidosis	olar
Table (7):	Stages of chronic kidney disease	38
Table (8):	Plasma blood glucose and A1C goals type 1 diabetes by age-group	
Table (9):	Markers for cell-derived microparticles	60
Table (10):	Cell-derived microparticles in so	
Table (11):	Clinical characteristics of type 1 diaberatients and control group	
Table (12):	Laboratory characteristics of type diabetic patients and control group	
Table (13):	complicated diabetic patients and congroup in relation to clinicopatholog	trol ical
	characteristics	114

List of Tables (Cont...)

Table No.	Title	Page No.
Table (14):	Comparison between normoalbum and microalbuminuric diabetic patier regards clinical and laboratory variab	nts as
Table (15):	PMPs levels in relation clinicopathological characteristics diabetic patients.	
Table (16):	Correlation between PMPs levels clinical and laboratory parameter diabetic patients	rs of
Table (17):	Multiple regression analysis of the re of PMPs to clinical and labor variables in type 1 diabetic patients	ratory

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Type 1 diabetes and the contribution of	
Figure (2): Figure (3):	HLA class I and class II proteins Potential roles of viral infection Effects of viral infection on the regulation	17
Figure (4):	of type 1 diabetes	18
Figure (5):	1 diabetes	20
_	development or prevention of type 1 diabetes	22
Figure (6):	Pathogenesis of type 1 diabetes and control by regulatory T cells	23
Figure (7):	Diagram of the effects of insulin deficiency	24
Figure (8):	Pathophysiology of DKA in type 1 or type 2 diabetes	
Figure (9):	Pathophysiology of diabetes and vascular disease	
Figure (10):	Approach to management of hyperglycemia.	
Figure (11):	Surface markers of MPs released by	
Figure (12):	different vascular cells	
Figure (13):	Schematic representation of the resting cytoskeleton	
Figure (14):	Schematic representation of functions attributed to microparticles	
Figure (15):	Proposed roles of platelet-derived and monocyte derived MPs in hemostasis and	
	thrombosis	71
Figure (16):	Role of TF-positive MPs in microvascular and venous thrombosis	79
Figure (17):	Representative diagram describing microparticle-evoked effects, depending on	
Figure (18):	their cellular origin, in the vascular system. Flow cytometric analysis of PMPs in type 1	
riguic (10).	diabetic patients.	107

List of Figures

Fig. No.	Title Page	No.
Figure (19):	Total cholesterol and triglycerides levels in	
	patients with type 1 diabetes compared	110
Figure (20).	with control group Serum creatinine and UACR levels in	112
Figure (20):	patients with type 1 diabetes compared	
	with control group.	112
Figure (21):	HbA1c and hs-CRP levels in patients with	
8 \	type 1 diabetes compared with control	
	group.	113
Figure (22):	Levels of platelets microparticles in	
	patients with type 1 diabetes compared	
	with control group.	113
Figure (23):	PMPs levels in type 1 diabetic patients with	
	and without micro-vascular complications	116
Figure (24):	compared with healthy controlsPMPs levels in normoalbuminuric and	116
Figure (24):	Microalbuminuric diabetic patients	119
Figure (25):	PMPs levels in patients with and without	110
1180110 (20)1	peripheral neuropathy.	119
Figure (26):	Positive correlation between PMPs levels	
	and HbA1c in type 1 diabetic patients	121
Figure (27):	Positive correlation between PMPs levels	
	and high sensitivity C-reactive protein (hs-	
TI (20)	CRP) in type 1 diabetic patients	121
Figure (28):	Receiver Operating Characteristic (ROC)	
	curve analysis of PMP for detection of	
	diabetic patients with micro-vascular complications.	199
	compileadons	⊥⊿∪

List of Abbreviations

Meaning Abb. ACE.....: Angiotensin converting enzyme ACEI: Angiotensin converting enzyme inhibitors ACR.....: Albumin-to-creatinine ratio ADA: American Diabetes Association AHA American Heart Association ANOVA.....: Analysis of Variance APC.....: Activated protein C aPL..... Antiphospholipid antibodies APS: Antiphospholipid antibody syndrome ATP..... Adenosine triphosphate AUC: Area under the curve bFGF.....: basic fibroblast growth factor BMI....: Body mass index cDCs.....: Conventional dendritic cells CTLA-4 Cytotoxic T lymphocyte associated-4 CVD: Cardio vascular disease DKA: Diabetic ketoacidosis DBP.....: Diastolic blood pressure DM: Diabetes mellitus DNA: Di nucleic acid DSME: Diabetes self-management education ECs..... Endothelial cells EDTA.....: Ethylene-Diamine-Tetra-Acetic acid ELISA.....: Enzyme-linked immunosorbent assay EMPs: Endothelial MPs eNOS.....: endothelial NO synthase EPCR Endothelial protein C receptor

List of Abbreviations (Cont...)

Abb. Meaning

ErMPs.....: Erythrocytes-derived MPs ESRD: End-stage renal disease FBS: Fasting blood sugar GAD: Glutamic acid decarboxylase GFR.....: Glomerular filtration rate GP Glycoprotein HbA 1c: Hemoglobin A1c HDL: High density lipoprotein HIT.....: Heparin-induced thrombocytopenia hs-CRP.....: high sensitivity C-reactive protein ICAM: Intercellular adhesion molecule ICAs: Islet Cell Autoantibodies IDDM: Insulin-dependent diabetes mellitus IFN-γ....: Interferon gamma iNKT: Invariant natural killer T iNOS: inducible NO-synthase IQR....: Interquartile range LDL....: low density lipoprotein MMPs.....: Monocyte-derived microparticles MNT..... Medical Nutrition Therapy MPs..... Microparticles mRNA: messenger ribo nucleic acid NO.....: Nitric oxide NPV Negative predictive value OGTT...... Oral glucose tolerance test PAF..... Platelet activating factor PAI-1..... Plasminogen activator inhibitor-1

List of Abbreviations (Cont...)

Abb. Meaning	
PAR1: Protease activated receptor 1	
pDCs: plasmacytoid DCs	
PDGF: Platelet-derived growth factor	
PDR: Proliferative diabetic retinopathy	
PE Phosphatidyl-ethanolamine	
PFP Platelet-free plasma	
PMNs: Polymorphonuclear leukocytes	
PMPs: Platelet microparticles	
PPV: Positive predictive value	
PS: Phosphatidylserine	
PSGL-1: P-selectin glycoproteinligand-1	
PrPc: Prion protein	
RANTES: Regulated on activation, normal T-cells expressed and secreted	
RBC: Red blood cells	
ROC: Receiver operating characteristic	
ROS: Reactive oxygen species	
SBP: Systolic blood pressure	
SCD: Sickle cell disease	
SDS: Standard deviation scores	
SLE: systemic lupus erythematosus	
T1DM: Type 1 diabetes mellitus	
TF: Tissue factor	
Th1 T helper 1	
TMPs: Tumor cells-derived MPs	
TNF- α : Tumor necrosis factor- α	

List of Abbreviations (Cont...)

Abb. Meaning TSH....: Thyroid-stimulating hormone UACR...: Urinary albumin-to-creatinine ratio

UAE: Urinary albumin excretion

VEGF.....: Vascular endothelial growth factor

VWF....:: Von Willebrand factor

ABSTRACT

Background: Diabetes complications represent a huge burden for patients and health services. Diabetic nephropathy (DN) is one of the most serious complications in patients with type 1 diabetes. It is considered the primary cause of mortality in type 1 diabetics and the most common cause of end-stage renal failure, also, a major predictor of premature death. Although microalbuminuria is considered the best available non-invasive marker for DN, it has inadequate specificity and sensitivity. The development of vasculopathies in diabetes involves multifactorial processes including pathological activation of vascular cells. Release of microparticles mainly derived from platelets by activated cells has been reported in diseases associated with thrombotic risk, but few data are available in diabetes. Objectives: This study aimed to explore the level of platelets microparticles in children and adolescents with type 1 diabetic patients and its relation to inflammation, glycemic control and microvascular complications. Patients and methods: Sixty children and adolescents with type 1 diabetes were recruited from pediatrics diabetes clinic, Ain shams university and compared with 40 age- and sex-matched healthy controls. Patients were subjected to detailed medical history, thorough clinical examination and routine work up including; CRP, HbA1c and urinary albumin excretion. In addition, flow cytometric analysis was done for platelets microparticles using anti-CD41b. **Results:** PMPs levels were significantly elevated in all diabetic patients compared with controls.PMPs levels were significantly increased in patients with micro-vascular complications (3.46 \pm 1.11%) and non-complicated patients (2.37 \pm 1.28%) compared with healthy control group (1.28 \pm 0.64%) with highest levels found in patients with complications (p<0.001). PMPs levels were significantly increased in relation to nephropathy (microalbuminuria) Although PMPs were increased in patients with peripheral neuropathy than those without, the difference did not reach a significant level (p>0.05). Correlation studies showed significant positive correlations between PMPs levels and BMI, HbA1c, serum creatinine, total cholesterol, UACR and hs-CRP (p<0.05). Multiregression linear analysis showed that HbA1c, UACR, hs-CRP and total cholesterol were independently related to PMPs levels in type 1 diabetic patients.ROC curve analysis revealed that the cutoff value of PMPs at 2.48% could differentiate patients with and without micro-vascular complications with a sensitivity of 80% and specificity of 73.3%

Conclusions: Platelets microparticles were elevated in type 1 diabetic patients than controls and can be considered as an early marker of microvascular complications. It is related to inflammation, glycemic control and albuminuria level of patients. Regular measurement of platelets microparticles especially in poorly controlled patients would help to identify those at high risk of developing vascular complications later in life.

INTRODUCTION

Diabetes is a group of metabolic diseases characterized by chronic hyperglycemia that is associated with long-term damage, dysfunction, and failure of different organs (Fowler, 2008; ADA, 2012). Type 1 diabetes mellitus (T1DM) is one of the most common endocrine and metabolic conditions in childhood. Incidence of T1DM is rapidly increasing especially among the youngest children but the overall annual increase is estimated around 3%. These very young children face long prepubertal years of hyperglycemia with the risk of early development of micro- and macro-vascular complications (Soltesz et al., 2009).

Diabetes complications represent a huge burden for patients and health services. The fight against each single complication has led to significant improvements in diabetes care, especially for microvascular complications, yet macroangiopathy remains a major source of morbidity and mortality. A common approach for the prevention and treatment of diabetes complications relies on the understanding of their complex pathophysiology (*Fadini et al., 2007*).

The development of vasculopathies in diabetes involves multifactorial processes including pathological activation of vascular cells. Release of microparticles by activated cells has been reported in diseases associated with thrombotic risk, but few data are available in diabetes *(Sabatier et al., 2002)*. These

vesicles have also been implicated to play a role in inflammation, coagulation and diseases associated with impairment of vascular function, e.g. atherosclerosis, diabetes and hypertension (Tushuizen et al., 2011).

Microparticles are intact vesicles derived from cell membranes following activation or apoptosis; they vary in size from 0.2-2.0 µm. They originate from blebbing and shedding from cell membrane surfaces in physiological and pathological conditions and are present in low concentrations in normal plasma (*Piccin et al.*, 2007). Platelet-derived MPs (PMPs) are the most abundant, representing about 70-90% of all circulating MPs and were originally studied because of their strong procoagulant activity (Owens and Mackman, 2011).

Increased levels of microparticles, mainly derived from platelets and to a lesser extent from leukocytes and endothelial cells, have been described in several pathologies associated with prothrombotic and proinflammatory tendencies like heparin-induced thrombocytopenia, thrombotic thrombocytopenic purpura, paroxismal nocturnal hemoglobinuria, HIV infection, hemolytic anemia and acute coronary syndromes (Mallat et al., 2000; Burnier et al., 2009; Tantawy et al., 2013). However, the clinical relevance of PMPs in type 1 diabetes remains to be fully elucidated.