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ABSTRACT.

- Fatma Abd El-Rahman Ahmed Zaid. On the Efficiency and Accuracy of

Numerical Solutions of Particular Differential Equations. Submitted for

the Degree of Doctor bf Philosophy in Science in Pure Mathematics

.(N umerical Analysis). Ain Shams University, 1999,

The main purpose of this thesis is to find a generalization for
Harten’s theorem for total variation non-increasing methods in the case of
five, seven up to 2m+1 points for non zero integer m. Also, we present a
general form of two-level and 2m-order in space and time explicit finite
difference scheme with 2m+1-point for hyperbolic conservation laws. The
form of this method is suitable for calculating the flux limiter techhique for
accuracy up to 2m-order. Also it will obtain the high resolution, total
variation non 1increasing oscillations free of fourth, sixth and eighth order

accurate explicit methods in space and time by adding suitable number of

~ limiters of antidiffusive flux to a first order scheme. By the same way we

shall treat the oscillations in the second and fourth order accurate implicit
methods in the space and time. And the right oscillations are treated of these
methods by adding inverse limiters for the limiters which we are adding to
treat the left oscillations. The CFL condition is still satisfied. Also it presents
the modification scheme for these methods to give high accuracy in the

region of the discontinuities.

Key words: hyperbolic conservation laws, weak solutions, Riemann’s

problem entropy condition, monotone numerical methods, high resoluticn

~ methods, flux limiter methods.
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