

MULTIPLE-ARM PASSIVE FILTERS DESIGN BASED ON DIFFERENT REACTIVE POWER DIVISION APPROACHES

By **Sameh Sayed Kandil Ibrahim**

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

MULTIPLE-ARM PASSIVE FILTERS DESIGN BASED ON DIFFERENT REACTIVE POWER DIVISION APPROACHES

By Sameh Sayed Kandil Ibrahim

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Associate Prof. Dr. Ahmed Mohamed Ibrahim

Electrical Power and Machines Department
Faculty of Engineering,
Cairo University

MULTIPLE-ARM PASSIVE FILTERS DESIGN BASED ON DIFFERENT REACTIVE POWER DIVISION APPROACHES

Sameh Sayed Kandil Ibrahim

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:

Assoc. Prof. Dr. Ahmed Mohamed Ibrahim	
Electrical Power and Machines Department	Main Advisor
Faculty of Engineering, Cairo University Prof. Dr. Mohamed Salah El Sobki	
Electrical Power and Machines Department Faculty of Engineering, Cairo University	Internal Examiner
Prof. Dr. Almoataz Youssef Abdelaziz	
Electrical Power and Machines Department Faculty of Engineering, Ain Shams University	External Examiner

Engineer's Name Sameh Sayed Kandil Ibrahim

Date of Birth: 14/05/1990 **Nationality:** Egyptian

E-mail: engsameh_elec@yahoo.com

Phone: 0106-6972024

Address: 25 El-Akhbar street - 6 October, Giza, Egypt

Registration Date: 1/10/2014 **Awarding Date:** //2018

Degree: Master of Science

Department: Electric Power and Machines Engineering **Supervisors:** Associate Prof. Dr. Ahmed Mohamed Ibrahim

Examiners:

Associate Prof. Dr. Ahmed Mohamed Ibrahim (Main Advisor)

Prof. Dr. Mohamed Salah El Sobki (Internal Examiner)

Prof. Dr. Almoataz Youssef Abdelaziz (External Examiner) Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University.

Title of Thesis:

MULTIPLE-ARM PASSIVE FILTERS DESIGN BASED ON DIFFERENT REACTIVE POWER DIVISION APPROACHES

Keywords:

Harmonic distortion, Passive filters, Power factor, Power quality, Crow Search Algorithm.

Summary:

This thesis introduces a comparative study of different techniques for reactive power division among shunt passive filter arms. A new optimization algorithm which is known as Crow Search Algorithm (CSA) is applied for 5th, 7th, and 11th harmonic filters design to achieve the parameters that can present the minimum current total harmonic distortion. The investigated test system is simulated using ETAP and Matlab environments, and then an equivalent model is constructed for the case study using Matlab-Simulink for validation purposes. The comparison criteria include network performance indices like harmonic distortion levels, filtering characteristics of the different design techniques, filter effectiveness, harmonic amplification ratio, and the risk of filters outage on the distortion levels. The filtering cost was evaluated to check the most economical technique. Finally, the filters' duties were checked according to the international standards to ensure a safe operation of filters.

ACKNOWLEDGMENTS

All thanks to Allah for guiding me to complete this thesis by helping me to finish my work effectively.

With all appreciation, I would like to thank **Dr. Shady H. E. Abdel Aleem**, for his continuous support, patience, technical guidance, and the particular interest he gave me to complete the work. Also, I would like to express my sincere gratitude to **Dr. Ahmed Mohamed Ibrahim** for his guidance and support during all stages of this work.

Finally, I would like to thank **my mother**, the person who deserves the gratitude for my progress, achievements, and success.

DEDICATION

TO MY MOTHER, MY SOURCE OF INSPIRATION.

TO SPIRITS OF THE MARTYRS: ENG. MOHAMED REDA AND ENG. MOHAB SALEH.

TO SPIRITS OF THE MARTYRS OF FACULTY OF ENGINEERING
- CAIRO UNIVERSITY.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	VIII
LIST OF SYMBOLS	
LIST OF PUBLICATIONS	
ABSTRACT	
CHAPTER (1)	28111
INTRODUCTION	1
1.1 Power Quality Definition.	
1.2 POWER QUALITY CLASSIFICATION.	
1.2.1 Transients	
1.2.2 SHORT-DURATION VARIATIONS	
1.2.3 Long-Duration Variations 1.2.4 Voltage Imbalance	
1.2.5 Power Frequency Deviation.	
1.2.6 Voltage Fluctuation (flicker).	
1.2.7 WAVEFORM DISTORTION.	
1.2.7.1 HARMONIC AND INTER-HARMONIC.	
1.3 HARMONICS IMPACT ON POWER SYSTEMS.	
1.4 TOPOLOGIES OF HARMONICS TREATMENT.	
1.5 Thesis Motivation.	
1.6 Thesis Objectives	
1.7 THESIS ORGANIZATION.	6
CHAPTER (2)	
MULTIPLE-ARM PASSIVE FILTERS DESIGN METHODS	7
2.1 HARMONICS SUPPRESSION TECHNIQUES	7
2.1.1 ACTIVE FILTERS	7
2.1.2 PASSIVE FILTERS.	
2.1.3 Hybrid filters.	
2.2 SINGLE-TUNED PASSIVE FILTERS.	
2.2.1 DESIGN CRITERIA.	
2.2.2 DE-TUNING EFFECT	10
2.3 METHODOLOGIES OF REACTIVE POWER DIVISION AMONG ARMS OF A SINGLE	10
TUNED PASSIVE FILTER	
2.3.1 LITERATURE REVIEW.	
2.3.2 EQUAL CAPACITANCE: METHOD 1	
2.3.3 FIXED STEP DIVISION: METHOD 2	12

REFERENCES	54
CONCLUSION AND FUTURE WORKS	52
CHAPTER (6)	
5.1 IMPACT OF VARIATION OF CSA PARAMETERS ON THE FITNESS VALUE. 5.2 FILTERS SIZE. 5.3 HARMONIC DISTORTION LEVELS. 5.4 EFFECTIVENESS FACTOR. 5.5 HARMONIC AMPLIFICATION RATIO (HAR). 5.6 FILTER COST ANALYSIS. 5.7 FILTER OUTAGE. 5.8 RISK OF RESONANCE. 5.9 FILTERING CHARACTERISTICS. 5.10 DUTIES CHECK OF THE FILTERS.	40 41 42 43 44 45 47
RESULTS AND DISCUSSION	
CHAPTER (5)	
4.2.2.2 TOTAL HARMONIC DISTORTION. 4.2.2.3 INDIVIDUAL HARMONIC DISTORTION. 4.2.2.4 DE-TUNING FACTORS. 4.2.2.5 QUALITY FACTOR	36 36 37
4.2.1 Objective Function. 4.2.2 Constraints. 4.2.2.1 Power Factor. 4.2.2.2 Total Harmonic Distortion.	36 36 36
4.1 NATURE-INSPIRED OPTIMIZATION TECHNIQUES	33
OPTIMAL DESIGN OF SINGLE-TUNED PASSIVE FILTERS BAS CROW SEARCH ALGORITHM	33
CHAPTER (4)	
3.1 THE SYSTEM UNDER STUDY. 3.2 VARIABLE SPEED DRIVES. 3.3 LOAD FLOW AND HARMONIC ANALYSIS. 3.4 THE SYSTEM SINGLE-PHASE EQUIVALENT-CIRCUIT. 3.5 CASE STUDY: VALIDATION BY SIMULATION.	22 23 28
THE SYSTEM UNDER STUDY	21
CHAPTER (3)	20
2.3.6 EQUAL CAPACITOR LOSSES: METHOD 5 2.3.7 MINIMUM CAPACITOR RATING: METHOD 6 2.3.8 MUTUAL FREQUENCY INFLUENCE: METHOD 7 2.3.9 COST MINIMIZATION: METHOD 8 2.4 PASSIVE FILTERS LIMITATIONS	14 15 17
2.3.4 HARMONIC CONTENT: METHOD 3 2.3.5 EQUAL INDUCTANCE: METHOD 4.	12

Appendix A: MATLAB CODE OF CSA AND CASE UNDER STUDY	59
Appendix B: ETAP EXTRACTED DATA FOR THE CASE UNDER ST	U DY 66

LIST OF TABLES

TABLE 3.1: MEASUREMT PARAMTERS AT THE PCC (Bus 8).	. 27
TABLE 3.2: CURRENT DISTORTION LIMITS (PECENTAGE OF THE FUNDAMENTAL)	. 27
TABLE 3.3: VOLTAGE DISTORTION LIMITS (PERCENTAGE OF THE FUNDAMENTAL)	. 27
TABLE 3.4: RESULTS BEFORE COMPENSATION USING DIFFERENT SOFWARES	. 32
TABLE 5.1: DESIGN FILTER PARAMETERS FOR THE USED TECHNIQUES	. 40
TABLE 5.2: HARMONIC DISTORTION LEVELS AT PCC AFTER FILTERS INSTALLATION	. 41
TABLE 5.3: EFFECTIVENESS FACTOR OF THE DESIGNED FILTERS.	. 43
TABLE 5.4: HARMONIC AMPLIFICATION RATIO (HAR) AFTER FILTERS INSTALLATION	. 44
TABLE 5.5: COST ANALYSIS OF THE DESIGNED FILTERS.	. 45
TABLE 5.6: DISTORTION LEVELS AFTER FILTER OUTAGE	. 46
TABLE 5.7: RESULTS OF THE DUTY CHECK ACCORDING TO IEEE 18-2012	. 51

LIST OF FIGURES

FIGURE 1.1: POWER QUALITY CAUSES FROM CUSTOMER AND UTILITY PERCEPTIONS 1	
FIGURE 1.2: DISTORTED WAVEFORM ANALYSIS	
FIGURE 2.1: SINGLE-TUNED AND DAMPED PASSIVE FILTERS	
FIGURE 2.2: DIFFERENT TYPES OF SHUNT PASSIVE FILTERS	
FIGURE 3.1: THE SYSTEM UNDER STUDY. 21	
FIGURE 3.2: DISTORTED OUTPUT CURRENT AND VOLTAGE WAVEFORMS THROUGH THE	
VSDs	
FIGURE 3.3: LOAD FLOW AT THE DIFFERENT BUSES (ACTIVE AND REACTIVE POWERS) 24	
FIGURE 3.4: LOAD FLOW AT THE DIFFERENT BUSES (FUNDAMENTAL RMS CURRENTS AND	
POWER FACTORS)	
FIGURE 3.5: HARMONIC ANALYSIS OF THE DIFFERENT BUSES	
FIGURE 3.6: INDIVIDUAL HARMONIC CURRENTS DISTORTION (PERCENTAGE OF THE	
FUNDAMENTAL) AT THE PCC COMPARED TO THE IEEE 519 LIMITS	
FIGURE 3.7: SHORT -CIRCUIT CURRENT AT DIFFERENT BUSES	
FIGURE 3.8: EQUIVALENT CIRCUIT OF THE CASE UNDER STUDY	
FIGURE 3.9: SIMULINK MODEL OF THE CASE UNDER STUDY	
FIGURE 3.10: CURRENT WAVEFORM BEFORE FILTERS INSTALLATION	
FIGURE 3.11: VOLTAGE WAVEFORM BEFORE FILTERS INSTALLATION	
FIGURE 4.1: EFFECT OF THE FLIGHT LENGTH ON THE POSTION OF THE CROW	
FIGURE 4.2: FLOW CHART OF CSA	
FIGURE 5.1: FITNESS VALUES AT $FL = 0.2$.	
FIGURE 5.2: FITNESS VALUES AT $FL = 2$. 39	
FIGURE 5.3: FITNESS VALUES AT FL = 4	
FIGURE 5.4: SIZES OF THE DESIGNED FILTERS	
FIGURE 5.5: TOTAL HARMONIC CURRENT DISTORTION (%)	
FIGURE 5.6: TOTAL HARMONIC VOLTAGE DISTORTION (%)	
FIGURE 5.7: EFFECTIVENESS FACTOR OF THE DESIGNED FILTERS	
FIGURE 5.8: HARMONIC AMPLIFICATION RATIO (HAR)	
FIGURE 5.9: FILTER FIXED, OPERATING AND TOTAL COST (L. E.)	
FIGURE 5.10: TOTAL HARMONIC CURRENT DISTORTION LEVELS AFTER FILTERS OUTAGE 47	
FIGURE 5.11: Frequency-impedance characteristics of the overall system 48	
FIGURE 5.12: FREQUENCY-IMPEDANCE CHARACTERISTICS OF THE SYSTEM: FOCUS ON	
SPECIFIC HARMONIC ORDERS, (A) FOCUS ON 2ND HARMONIC ORDER, (B) FOCUS ON 5TH	I
HARMONIC ORDER, (C) FOCUS ON 7TH HARMONIC ORDER, AND (D) FOCUS ON 11TH	
HARMONIC ORDER. 49	

LIST OF ABBREVIATIONS

PCC Point of Common Coupling

THDI Total Harmonic Current Distortion

THDV Total Harmonic Voltage Distortion

IHD Individual Harmonic Distortion

HAR Harmonic Amplification Ratio

PF Power Factor

CSA Crow Search Algorithm

NSGA Non-Dominated Sorting Genetic Algorithm

VSD Variable Frequency Drive

ASD Adjustable Speed Drive

OF Objective Function

FL Flight Length

AP Awareness Probability

BA Bat algorithm

PSO Particle swarm optimization

SA Simulated annealing

LIST OF SYMBOLS

 I_f , I_1 RMS value of the fundamental current

I_h RMS value of the harmonic current

Q_C total three phase reactive power supplied by the capacitor bank

P total three phase active power

S total three phase apparent power

 $Cos \Phi$ load power factor

R internal resistance of the inductor

L_f inductance of the filter inductor

C_f capacitance of the filter capacitor

F₀ resonant frequency

Q reactive power supplied by the filter branch

X_L inductive reactance of the filter

X_C capacitive reactance of the filter

q quality factor of the reactor

H harmonic order

N Number of filter arms

Q_{ith} three phase reactive power supplied by the ith filter

IHD_{ith} Individual harmonic distortion of the ith order.

IHD_{max} maximum allowable individual harmonic distortion

THDI_{max} maximum allowable total harmonic current distortion

THDV_{max} maximum allowable total harmonic voltage distortion

Tan δ loss tangent of the capacitor

Oith phase shift of the ith waveform

 ω_1 fundamental angular frequency

C_{ith} capacitance of the ith filter capacitor

V₁ RMS value of the fundamental phase voltage

I_{ith} RMS value of the ith harmonic current

V_{ith} phase voltage across the ith capacitor

 $P_{\delta ith}$ specific power losses of the ith filter branch

 ω_p angular frequency of the parallel resonance

F_C capacitor power losses

K_{CL} loss factor of the capacitor

P_h present value factor

i interest rate

F_U filter utilization factor

 U_U cost of the power losses

U_C incremental cost of the capacitor

U_L incremental cost of the reactor

I_{SC} RMS value of the short circuit current

I_L RMS value of the load current

R_{SC} short circuit resistance

X_{SC} short circuit inductive reactance

 $V_f(h\omega)$ harmonic voltage percentage after filter installation

x (i,t) position function of the crow i at iteration t

m(i,t) memory function of the crow i at iteration t

 r_i probability function with uniform distribution

fl(i,t) flight length function of the crow i at iteration t

 V_{rated} rated voltage across the capacitor

 I_{rated} rated current through the filter

Q_{rated} rated reactive power of the filter

V_C RMS value of the voltage across the capacitor

I_C RMS value of the current flowing through the filter

Q_C RMS value of the filter reactive power

X_{C1} fundamental capacitive reactance

Z_{fh} filter impedance at the harmonic order h

 h_{max} maximum harmonic order

Q_{desired} required reactive power of the compensation

x Fixed cost (investment) of the filter

y Power losses cost (operating) of the filter

δ Filter tuning factor