#### AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEOPHYSICS DEPARTMENT



#### Implementation of Geophysical Techniques to Evaluate Hydrocarbon Potentialities in Some Pliocene and Cretaceous Reservoirs: North Sinai - Offshore Mediterranean

A Thesis Submitted In Partial Fulfillment of the Requirements for the Ph.D. Degree of Science in Geophysics

# BY Ehab Eid Hanafy (M. Sc. in Geophysics, Cairo University, 2013)

# To GEOPHYSICS DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

#### **Supervised By**

Prof. Dr. Abdel Moktader A. El Sayed

Prof. of Geophysics, Geophysics Department, Faculty of Science Ain Shams University

Prof. Dr. Abdel Naser Helal

Dr. Mohamed A. Alaraby

Prof. of Geophysics, Geophysics Department, Faculty of Science Ain Shams University Subject Matter Expert of Geophysics, Kuwait Energy Company

**Cairo, 2018** 

#### AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEOPHYSICS DEPARTMENT



#### Ph. D. Thesis

Name of student: Ehab Eid Hanafy Mohamed Ibrahim

**Title of thesis:** Implementation of Geophysical Techniques to Evaluate Hydrocarbon Potentialities in Some Pliocene and Cretaceous Reservoirs: North Sinai - Offshore Mediterranean

#### **Supervised by:**

#### Prof. Dr. Abdel Moktader Abdel Aziz El Sayed

Prof. of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

#### Prof. Dr. Abdel Naser Mohamed Helal

Prof. of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

#### Dr. Mohamed Al Sayed Alaraby

Subject Matter Expert of Geophysics, Kuwait Energy Company

#### AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEOPHYSICS DEPARTMENT



#### **Approval Sheet**

Name of student: Ehab Eid Hanafy Mohamed Ibrahim

**Title of thesis:** Implementation of Geophysical Techniques to Evaluate Hydrocarbon Potentialities in Some Pliocene and Cretaceous Reservoirs: North Sinai - Offshore Mediterranean

#### Approved by:

#### Prof. Dr. Abdel Moktader Abdel Aziz El Sayed

Prof. of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

#### Prof. Dr. Awad Abdel Khalek Ahmed Omran

Prof. of Well Logging, Faculty of Science, Assiut University

#### Dr. Osama Amin Al Shaarawy

Senior Vice president, Kuwait Energy Company

## إهداء

لله الحمد كما ينبغي لجلال وجمه وعظيم سلطانه وله الحمد والشكر على نعمه التي لا تعد و لا تحصي...أمدى هذا العمل إلى روم أبى العزيز إيمانا بكونه سبب وجودى في الحياة و اعتراها بهضله على رحمه الله...و إلى أمى الحبيبة الغالية إعتراها باهضالما الكثيرة علي و العطاء الدائم الذي لا ينضب و ادعو الرحمن الرحيم ان يحفظها ويطيل في عمرها...و إلى زوجتي الحبيبة الغالية و شريكة الحياة التي لو تتواني عن مساندتي و بث روح الممة و العزيمة في نفسي ...و إلى اخوتي الاغزاء الاحراء...و إلى كل من له فضل في تعليمي...إلى كل مؤلاء امدى ثمرة جمدى المتواضع.

#### **ACKNOWLEDGEMENTS**

I would like to express my sincere gratitude to my advisor Prof. Dr. Abdel Moktader A. El Sayed, Geophysics Department, Faculty of Science, Ain Shams University, for the continuous support of my Ph.D. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me at all the time of research and writing of this thesis.

Also, I would like to thank Prof. Dr. Abdel Naser Mohamed Helal, Geophysics Department, Faculty of Science, Ain Shams University, for his technical supervision and revision of this thesis.

My sincere thanks extend to Dr. Mohamed A. Alaraby, Kuwait Energy Company, for his useful comments and encouragement, also for the hard discussion which encourage me to widen my research from various perspectives. The assistance of Dr. Nahla A. El Sayed is highly appreciated.

#### **ABSTRACT**

The aim of this study is to evaluate the structure for the shallow and deeper reservoirs using the available 3D seismic and borehole data to delineate the possible hydrocarbon prospects and generating amplitude maps. On the other hand, the study of the possible amplitude bright spots to indicate the gas anomalies within the study area and computing of the standard poststack AVO attributes in order to identify AVO anomaly classifications. The AVO inversion and acoustic impedance are computed to delineate the elastic parameters, such as (porosity, fluid and reservoir types). Integrating results of the structure depth maps and amplitude maps with the AVO-attributes and inversion were performed to delineate the hydrocarbon potentiality, creating prospect inventory map and to delineate the possible leads. Prospects and evaluating the potential targets for multiple reservoirs as Pliocene, Miocene, Oligocene, Eocene, Cretaceous and Jurassic were performed. As consequence of the interpretation performed, the basic results characterizing the seismicgeological model of the study area have been obtained as the structure geometry of the area, based on key reflectors and horizons related to productive and prospective sediments. The structure of the Lower Cretaceous sand reservoirs are discovered by Mango-1 well. Based on this study, I performed the potential of the Pliocene-Pleistocene targets related to deepwater fans. In the northwestern and northern parts in the Upper Miocene section, I have delineated the possible organogenic carbonate buildups. In the southwestern part in the Lower Miocene reservoir, I have mapped a prospective deepwater fan.

For new hydrocarbon discovery related to the possible Upper Miocene organogenic carbonate buildups, I recommend to drill exploratory well in the northern part of the study area with target depth 2,600 m.

### **CONTENTS**

| List Of Contents                                   | Page |
|----------------------------------------------------|------|
| LIST OF FIGURES                                    | V    |
| LIST OF TABLES                                     | XX   |
| CHAPTER I: INTRODUCTION                            | 1    |
| 1.1 LOCATION OF THE STUDY AREA                     | 1    |
| 1.2 EXPLORATION HISTORY                            | 3    |
| 1.3 GEOLOGICAL SETTING                             | 9    |
| 1.3.1 Lithologic and Stratigraphic Characteristics | 9    |
| 1.3.2 Regional Tectonic Setting                    | 13   |
| 1.3.3 Oil and Gas Occurrence                       | 15   |
| 1.3.4 Reservoirs                                   | 15   |
| 1.3.5 Seals                                        | 18   |
| 1.3.6 Source Rocks                                 | 19   |
| 1.3.7 Hydrocarbon Generation                       | 19   |
| 1.3.8 Maturity, Expulsion and Migration            | 19   |
| 1.4 AIM OF THE STUDY                               | 20   |
| CHAPTER II: SEISMIC DATA ACQUISITION               | 21   |
| 2.1 SEISMIC SURVEY SUMMARY                         | 21   |
| 2.2 SEISMIC SURVEY PARAMETERS                      | 36   |
| 2.3 SEISMIC DATA QUALITY                           | 38   |
| 2.3.1 Seismic Interference                         | 39   |
| 2.3.2 Swell Noise                                  | 39   |
| 2.3.3 Turn Noise and Door Wash Noise               | 40   |
| 2.3.4 Ship Noise                                   | 41   |
| 2.4 SEISMIC DATA BRUTE STACK                       | 41   |

| CHAPTER III: SEISMIC DATA PROCESSING         | 43 |
|----------------------------------------------|----|
| 3.1 SEISMIC WORKFLOW                         | 43 |
| 3.2 SEISMIC DATA USED FOR INTERPRETATION     | 48 |
| CHAPTER IV: GEOPHYSICAL WELL LOGGING         | 54 |
| 4.1 INTRODUCTION                             | 54 |
| 4.2 DATA SET AVAILABLE FOR WELL LOG ANALYSIS | 55 |
| 4.2.1 Caliper Log                            | 55 |
| 4.2.2 Spontaneous Potential Log              | 55 |
| 4.2.3 Gamma Ray Log                          | 56 |
| 4.2.4 Resistivity Logs                       | 56 |
| 4.2.5 Porosity Logs                          | 57 |
| 4.3 RAW DATA QUALITY CONTROL                 | 59 |
| 4.4 PETROPHYSICAL ANALYSIS PROCEDURE         | 60 |
| 4.5 LITHOLOGY IDENTIFICATION                 | 61 |
| 4.5.1 GR-Δt crossplots                       | 62 |
| 4.5.2 GR-фN crossplots                       | 63 |
| 4.5.3 φN-Δt crossplots                       | 64 |
| 4.5.4 φN-ρ crossplots                        | 65 |
| 4.6 LOWER CRETACEOUS RESERVOIR DESCRIPTION   | 66 |
| 4.6.1 S1 Sand                                | 66 |
| 4.6.2 S2 Sand                                | 67 |
| 4.6.3 S3 Sand                                | 68 |
| 4.6.4 S4 and S5 Sands                        | 72 |
| 4.6.5 S6 Sand                                | 73 |
| 4.6.6 S7 Sand                                | 75 |
| 4.7 PICKETT CROSSPLOT METHOD                 | 76 |
| 4.8 EL-SAYED VELOCITY POROSITY MODEL         | 77 |

| 4.9 PERMEABILITY PREDICTION                                | 80  |
|------------------------------------------------------------|-----|
| 4.10 HYDRAULIC FLOW UNIT (HFU)                             | 84  |
| CHAPTER V: SEISMIC DATA INTERPRETATION                     | 89  |
| 5.1 WAVE PARAMETERS AND CORRELATION OF                     | 89  |
| REFLECTORS                                                 |     |
| 5.2 TRACKING OF FAULTS                                     | 95  |
| 5.3 CONSTRUCTION OF STRUCTURAL MAPS                        | 96  |
| 5.4 AVO-PROCESSING & AVO-INVERSON                          | 103 |
| 5.4.1 Pre-Processing of Initial Gathers for Computation of | 103 |
| AVO Attributes and Inversion                               | 103 |
| 5.4.2 Geology Matching & Waveform Evaluation               | 108 |
| 5.4.3 Computation of Standard AVO-Attributes               | 122 |
| 5.4.4 Inversion                                            | 124 |
| 5.4.5 Post-Stack Inversion                                 | 126 |
| 5.4.6 Pre-Stack Inversion (AVO-Inversion)                  | 127 |
| 5.4.7 Modeling the AVO Effects and Impedances through the  | 133 |
| Reservoir Fluid Substitution                               | 133 |
| 5.4.8 Computation of a Predictive Porosity Cube through    | 140 |
| Forward Re-Calculation                                     | 140 |
| 5.4.9 Creation of A Porosity Cube Using Multi-Factor       | 142 |
| Analysis                                                   |     |
| 5.4.10 Creation of Net Pay Forecast Map for S2 in Mango-1, | 152 |
| 2 and 3 Wells Areas                                        | 132 |
| CHAPTER VI: RESULTS AND DISCUSSIONS                        | 154 |
| 6.1 TECTONIC STRUCTURE AND HISTORY OF                      | 154 |
| EVOLUTION OF THE STUDY AREA                                |     |
| 6.2 THE STUDY AREA PETROLEUM POTENTIAL                     | 184 |

| 6.2.1 Pliocene-Pleistocene                   | 185 |
|----------------------------------------------|-----|
| 6.2.2 Miocene                                | 201 |
| 6.2.3 Oligocene                              | 208 |
| 6.2.4 Upper Cretaceous-Eocene                | 209 |
| 6.2.5 Lower Cretaceous                       | 211 |
| 6.2.6 Jurassic                               | 227 |
| CHAPTER VII: CONCLUSIONS AND RECOMMENDATIONS | 232 |
| REFERENCES                                   | 238 |

### LIST OF FIGURES

| List Of Figures                                                  | Page |
|------------------------------------------------------------------|------|
| Fig. 1.1 Overview Map of Study Area                              | 2    |
| Fig. 1.2 Coverage of The Area By Seismic And Drilling Activities | 8    |
| Fig. 1.3 Lithologic and Stratigraphic Section of The North Sinai | 11   |
| Offshore Area                                                    |      |
| Fig. 1.4 Main Structural Elements of North Sinai And Nile Delta  | 14   |
| Fig. 2.1 Location of the 3D Marine Seismic Survey Area           | 21   |
| Fig. 2.2 Vessel Positions And Water Depth                        | 24   |
| Fig. 2.3 Seismic Data Acquisition Scheme                         | 27   |
| Fig. 2.4 Shot Gather With Swell Noise                            | 39   |
| Fig. 2.5 Shot Gather With Turn Noise                             | 40   |
| Fig. 2.6 Sample from In-Line Brute Stack                         | 42   |
| Fig. 2.7 Sample from Time Slice Brute Stack                      | 42   |
| Fig. 3.1 Seismic Line 1080 before Additional Processing          | 46   |
| Fig. 3.2 Seismic Line 1080 after Additional Processing           | 46   |
| Fig. 3.3 Seismic Line 1080 before Noise Attenuation              | 47   |
| Fig. 3.4 Seismic Line 1080 after Noise and Migration Smiles      | 47   |
| Attenuation                                                      |      |
| Fig. 3.5 Time Sections along SE-NW Traverse Passing              | 50   |
| Through the Area                                                 |      |
| Fig. 3.6 Attributes Maps for Seismic Cube Quality for the        | 51   |
| Upper Interval                                                   |      |

| Fig. 3.7 Attributes Maps for Seismic Cube Quality for the | 52 |
|-----------------------------------------------------------|----|
| Lower Interval                                            |    |
| Fig. 4.1 GR-Δt Crossplots (Mango-1 well) for Lithology    | 62 |
| Identification                                            |    |
| Fig. 4.2 GR-фN Crossplots (Mango-1 well) for Lithology    | 63 |
| Identification                                            |    |
| Fig. 4.3 φN-DT Crossplots (Mango-1 well) for Lithology    | 64 |
| Identification                                            |    |
| Fig. 4.4 φN-ρ Crossplots (Mango-1 well) for Lithology     | 65 |
| Identification                                            |    |
| Fig. 4.5 S1 Sand Logs (Mango-1 well)                      | 67 |
| Fig. 4.6 S2 Sand Logs (Mango-1 well)                      | 68 |
| Fig. 4.7 S3 Sand Logs (Mango-1 well)                      | 71 |
| Fig. 4.8 S4 Sand Logs (Mango-1 well)                      | 72 |
| Fig. 4.9 S5 Sand Logs (Mango-1 well)                      | 73 |
| Fig. 4.10 S6 Sand Logs (Mango-1 well)                     | 74 |
| Fig. 4.11 S7 Sand Logs (Mango-1 well)                     | 75 |
| Fig. 4.12 Pickett Crossplot (Mango-1 well)                | 77 |
| Fig. 4.13 Velocity-Porosity Relationship at Different     | 78 |
| Multipliers (El-Sayed, A. M. A., 2000)                    |    |
| Fig. 4.14 Velocity- Porosity Relationship                 | 79 |
|                                                           |    |

| Fig. 4.15 Permeability Contours Drawn On Pickett Plot of     | 83 |
|--------------------------------------------------------------|----|
| Rottwieler Sandstone Data, Using a Wyllie-Rose Relationship  |    |
| with both Porosity and Irreducible Water Saturation. The     |    |
| Contours Honor the Timur Equation Form Which Was             |    |
| Developed For Sandstones                                     |    |
| Fig. 4.16 Porosity – Permeability Relation of the Lower Safa | 85 |
| Reservoir                                                    |    |
| Fig. 4.17 Cross Plot Illustrate Relation between RQI and     | 86 |
| Normalized Porosity                                          |    |
| Fig. 4.18 Cross Plot Illustrates Relation between RQI and    | 87 |
| Normalized Porosity With Respect To HFU                      |    |
| Fig. 4.19 FZI Histogram for Units Boundary Prediction        | 87 |
| Fig. 4.20 Porosity–Permeability Relationship of the Lower    | 88 |
| Safa Reservoir with HFU.                                     |    |
| Fig. 5.1 Example of Seismic Sequences in the Study Area      | 89 |
| along Line 1940                                              |    |
| Fig. 5.2 Examples of Migration Smiles                        | 90 |
| Fig. 5.3 Onlap of Internal Deposits to Lower Cretaceous      | 91 |
| Reflector                                                    |    |
| Fig. 5.4 Example of Multiples on Time Section                | 93 |
| Fig. 5.5 Inferred Reefs in the Wavefield                     | 94 |
| Fig. 5.6 Pliocene-Pleistocene Alluvial Fans in the Wavefield | 95 |
| Fig. 5.7 Cube Line Showing Discontinuity of Seismic Line     | 95 |
| 1510                                                         |    |
|                                                              | 1  |

| Fig. 5.8 VSP Curves                                         | 96  |
|-------------------------------------------------------------|-----|
| Fig. 5.9 Curve Showing the Relationship between Depth (DH)  | 97  |
| and Time (DT) For the Upper Miocene Reflector               |     |
| Fig. 5.10 Structural Map Showing Upper Miocene Reflector,   | 98  |
| Which Was Constructed Using the Empirical Relationship      |     |
| Fig. 5.11 Structural Map Showing Upper Miocene Reflector    | 99  |
| Which Was Constructed Using Average Velocities              |     |
| Fig. 5.12 Map of Average Velocities Showing Upper Miocene   | 99  |
| Reflector                                                   |     |
| Fig. 5.13 Comparison of Two Mapping Options for Structural  | 100 |
| Maps                                                        |     |
| Fig. 5.14 Difference between Two Options of Structural      | 100 |
| Imaging                                                     |     |
| Fig. 5.15 Fitting Of a Gain Curve to Compensate Reflection- | 104 |
| Wave Amplitude Attenuation At Large Offsets                 |     |
| Fig. 5.16 Example of Seismic Gathers Before and After Mute  | 105 |
| Application                                                 |     |
| Fig. 5.17 Gathers After Superbinning (Fold 30; Offsets 448– | 106 |
| 4,923) In the Upper Interval (0-2,900 Ms)                   |     |
| Fig. 5.18 Gathers after Superbinning (Fold 30; Offsets 447- | 106 |
| 4,923) In the Lower Interval (1,900-5,000 Ms)               |     |
| Fig. 5.19 Seismic Gathers After Phase Correction, Upper     | 107 |
| Interval                                                    |     |

| Fig. 5.20 Seismic Gathers After Phase Correction, Lower     | 107 |
|-------------------------------------------------------------|-----|
| Interval                                                    |     |
| E: 5.21.7 DI W. 14. 14. 14. (400.1.500.M.) 0                | 109 |
| Fig. 5.21 Zero-Phase Wavelets in the Upper (400-1,500 Ms) & | 107 |
| Lower (1,600-3,500 Ms) Intervals of the Section             |     |
| Fig. 5.22 Matching Table for Mango-1; Interval 900-1,900 Ms | 110 |
| Fig. 5.23 Matching Table for Mango-1; Interval 1,500-2,500  | 111 |
| Ms                                                          |     |
| Fig. 5.24 Matching Table for Mango-1; Interval 2,400-3,300  | 111 |
| Ms                                                          |     |
| Fig. 5.25 Matching Table for Mango-1; Interval 3,200-4,600  | 112 |
| Ms                                                          |     |
| Fig. 5.26 Synthetic-To-Seismic Trace Cross-Correlation      | 112 |
| Function for Mango-1; Interval 1,000-2,000 Ms               |     |
| Fig. 5.27 Phase Scanning For Mango-1; Interval 1,000-2,000  | 113 |
| Ms.                                                         |     |
| Fig. 5.28 Synthetic-To-Seismic Trace Cross-Correlation      | 113 |
| Function for Mango-1; Interval 2,100-2,900 Ms               |     |
| Fig. 5.29 Phase Scanning For Mango-1; Interval 2,100-2,900  | 114 |
| Ms.                                                         |     |
| Fig. 5.30 Mango-2 Matching; Interval 2,000-3,050 Ms.        | 114 |
| Fig. 5.31 Synthetic-To-Seismic Trace Cross-Correlation      | 115 |
| Function for Mango-2; Interval 2,000-3,100 Ms.              |     |
| Fig. 5.32 Phase Scanning For Mango-2; Interval 2,000-3,100  | 115 |
| Ms.                                                         |     |
|                                                             | l   |