Serum Fetuin A Level in Patients with NAFLD and Chronic HCV

Thesis

Submitted for Partial Fulfillment of MSc Degree in Internal Medicine

Presented by

Roqaya Mahmmed Hussein Salman

M.B.B.Ch
Misr University for Science and Technology

Under Supervision of

Prof. Dr./ Mohamed Ali Marie Makhlouf

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Assist Prof. Dr./ Shereen Abo Bakr Saleh

Assistant Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr./ Mohamed Magdy Salama

Lecturer of Internal Medicine and Gastroentrology Faculty of Medicine, Ain Shams University

Dr./ Mohamed Ali Awadeen

Lecturer of Internal Medicine and Gastroentrology Faculty of Medicine, Misr University for Science and Technology

> Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

In the beginning I have to thank Allah who gave me power and strength to carry out this work.

It is a great pleasure to express my sincere gratitude and highest appreciation to **Prof. Dr.Mohamed Marie Makhlouf**, Professor of Gasrtoenterology and Hepatology, Faculty of Medicine Ain Shams University under whose guidance and constant supervision this work has been prepared. Actually, more and above words fail to cope with his overwhelming kindness and moral support that was a great help to me.

I would like to express my sincere gratitude to **Dr. Shereen Abou Bakr Saleh**, Assistant Professor of Gasrtoenterology and Hepatology, Faculty of Medicine Ain Shams University for her generous help, valuable suggestions and keen supervision and great effort to achieve this work.

My deepest appreciations are to **Dr. Mohamed Magdy Salama.**Lecturer of Gasrtoenterology and Hepatology, Faculty of Medicine, Ain Shams University, for his considerable help and continuous guidance.

My special thanks and deep appreciation to **Dr**Mohamed Ali Awadeen, Lecturer of Gasrtoenterology and Hepatology, Faculty of Medicine, Misr University For Science and Technology for his great support and encouragement throughout this work.

Also great thanks to all dear **professors** from whom I learned as well as my dear colleagues who supported me during this work.

Finally, I dedicate this work to my family (my parents, my brothers and my husband) who was of great help, gave me a lot of guidance and support.

Roqaya Mahmmed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	vii
Introduction	1
Aim of the Work	16
Review of Literature	
Nonalcoholic Fatty Liver Disease	17
➡ Hepatitis C	47
Myokines, Adipokines and Hepatokines	66
👺 Fetuin A	88
Patients and Methods	104
Results	113
Discussion	147
Summary	155
Conclusion	158
Recommendation	159
References	160
Appendex	205
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Criteria for clinical diagnosis of the MS	25
Table (2):	Symptoms, Signs, and Laboratory Feature NAFLD	
Table (3):	Main extra hepatic manifestations of hepa C Virus infection	
Table (4) :	Interpretation of HCV assays	58
Table (5):	Approved HCV drugs in the European Uin 2016	
Table (6):	Treatment recommedations for H monoinfected or HCV/HIV coinfected pati with chronic hepatitis C without cirrh including treatment – naïve patients patients who failed on a treatment based PegIFN- α and ribavirin (RBV)	ents osis, and d on
Table (7):	Treatment recommendations for H monoinfected or HCV/HIV patients hepatitis C with compensated (child – Pug cirrhosis, including treatment – naïve pati and patients who failed on a treatment be on PegIFN-α and ribavirin (RBV)	h A) ents ased
Table (8):	Reference values of Fetuin A levels	109
Table (9) :	Comparison between control group patients group regarding demographic (age, sex and BMI)	data
Table (10):	Comparison between control group patients group regarding compenents of (HB, TLC and PLT)	CBC

List of Tables (Cont...)

Table No.	Title	Page No.
Table (11):	Comparison between control group patients group regarding liver function (AST, ALT, BIL T, BIL D, Alb, PT and INR) Alfa-Feto p	tests and
Table (12):	Comparison between control group patients group regarding kidney functests (NA, K, BUN and CREAT)	ction
Table (13):	Comparison between control group patients group regarding HBA1C, FBS, S. and S. TAG	СНО
Table (14):	Comparison between control group patients group regarding APRI, FIB4 , FETA	TUIN
Table (15):	Comparison between control group patient subgroups (NAFLD, HCV) regar demographic data (age, sex, BMI)	ding
Table (16):	Comparison between control group patients subgroups regarding component CBC (HB, TLC and PLT)	es of
Table (17):	Comparison between control group and pat subgroups (NAFLD and HCV) regarding function tests (AST, ALT, BIL T, BIL D, ALB INR and Alpha-feto P)	liver 8, PT,
Table (18):	Comparison between control group patients subgroups (NAFLD and Fregarding kidney function tests (NA, K, and CREAT)	HCV)

List of Tables (Cont...)

Table No.	Title	Page No.
Table (19):	Comparison between control group and particles subgroups (NAFLD and HCV) regarding (HFFBS, S. CHO and S. TAG)	BA1C,
Table (20):	Comparison between control group patient subgroups (NAFLD and largarding APRI, FIB4 score and FETUIN A	HCV)
Table (21) :	Correlation of Fetuin A with the stuparameters in all patients group subgroups	and
Table (22):	Correlation of serum cholesterol with studied parameters in all patients group subgroups (NAFLD, HCV)	and
Table (23):	Correlation of serum triglyceride with studied parameters in all patients group subgroups (NAFLD, HCV)	and

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Two-hit hypothesis of nonalcoholic fat disease	-
Figure (2):	Interplay among environmental and factors in the development of nonalcoholiver disease	lic fatty
Figure (3):	Effect of insulin resistance on formation liver	
Figure (4):	Ectopic fat accumulation and lipotox various organs	-
Figure (5):	Classifications of myokines, adipokin hepatokines	
Figure (6):	Comorbidties of physical inactivity	67
Figure (7):	Effect of obesity and type II diabed different body organs	
Figure (8):	Effect of myokines on liver and white a	-
Figure (9):	Effect of obesity on release of different t	• •
Figure (10):	Effect of anti-inflammatory adipokines of muscle and pancreas	
Figure (11):	Effect of secretion of hepatokines on live	er84
Figure (12):	Structure of Fetuin A	90
Figure (13):	Comparison between control grou patients group regarding S. cholesterol triglyceride	and S.
Figure (14):	Comparison between control grou patients group regarding fetuin A level	•

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (15):	Comparison between control group and particular subgroups (NAFLD and HCV) regarding B	
Figure (16):	Comparison between control group patients subgroups (NAFLD and regarding serum cholesterol level	HCV)
Figure (17):	Comparison between control group patients subgroups (NAFLD and regarding serum triglyceride level	HCV)
Figure (18):	Comparison between control group patients subgroups regarding fetuin A lev	
Figure (19):	Correlation between fetuin A and INR patients group	
Figure (20):	Correlation between fetuin A and cholesterol in all patients group	
Figure (21):	Correlation between fetuin A and triglyceride in all patients group	
Figure (22):	Correlation between fetuin A and cholesterol in NAFLD group.	
Figure (23):	Correlation between fetuin A and triglyceride in NAFLD group	
Figure (24):	Correlation between fetuin A and cholesterol in hepatitis C virus group	
Figure (25):	Correlation between fetuin A and triglyceride in hepatitis C virus group	
Figure (26):	Correlation between serum cholestero	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (27):	Correlation between serum cholester fetuin A levels in NAFLD group	
Figure (28):	Correlation between serum cholester fetuin A levels in hepatitis C virus with fa group	tty liver
Figure (29):	Correlation between serum triglycerifetuin A levels in all patients	
Figure (30):	Correlation between serum triglycerifetuin A levels in NAFLD group	
Figure (31):	Correlation between serum triglyceri fetuin A levels in hepatitis C virus with fa group	tty liver
Figure (32):	Cut off point of serum fetuin A	143
Figure (33):	Cut off point of serum fetuin A in dia NAFLD group.	
Figure (34):	Cut off point of serum fetuin A in dia HCV group.	
Figure (35):	The best cut off point of serum fetu differentiating NAFLD group from HCV g	

Introduction

Introduction

on-alcoholic fatty liver disease (NAFLD) encompasses the simple steatosis to more progressive steatosis with associated hepatitis, fibrosis, cirrhosis, and in some cases hepatocellular carcinoma.NAFLD is considered a growing epidemic, not only in the western world, but worldwide in part due to obesity and insulin resistance leading to liver accumulation of triglycerides and free fatty acids (Benedict and Zhang, 2017).

NAFLD place a strain on the medical system and its resources, it also is associated with a 34%-69% chance of dying over the next 15 years when compared with the general population (Patel and Saxena, 2016).

Hepatic steatosis is a feature of chronic HCV infection and a potentially finalistic condition favoring the persistence and replication of HCV thus be a useful marker for identifying those HCV patients at higher risk of liver disease progression, development of extra-hepatic diseases, and, possibly, reduced response rate to novel antivirals (Adinolfi et al., 2016).

As HCV is an RNA virus with little potential for integration of its genetic material into the host genome, HCV contributes to HCC development in an indirect way, through induction of chronic inflammation, and directly, by means of viral factors. HCV-induced HCC development is a multi-step process that involves establishment of chronic HCV infection,

persistent chronic hepatic inflammation, progressive liver fibrogenesis (Billerbeck et al., 2013).

Chronic infection with HCV is the leading cause of endstage liver disease, hepatocellular carcinoma (HCC) and liverrelated death in Egypt. HCV causes chronic hepatitis in 60%-80% of the patients, and 10%–20% of those patients develop cirrhosis over 20–30 years of HCV infection. About 1%–5% of the patients with liver cirrhosis may develop liver cancer and 3%-6% may decompensate during the following 20-30 years. The risk of death in the following year after an episode of decompensation is between 15% and 20% (Westbrook, 2014).

Adipose tissue is now established as an active endocrine organ that has a big role in secretion of adipokines. Altered adipokine production and secretion can provide a link between adipose tissue dysfunction and obesity related disorders. as they are responsible for regulation of the whole body metabolism because they are involved in impaired insulin sensitivity or secretion, inflammation, fat distribution, satiety, and appetite, as well as endothelial dysfunction and atherosclerosis (Kloting and Bluher, 2014).

Fetuin A is a glycoprotein formed by liver cells and secreted into the serum in high concentration. Fetuin A is formed during embryogenesis. It stimulates bone remodelling, regulates the process of osteogenesis and it inhibits ectopic calcification (Szweras et al., 2002).

An association between insulin resistance and type 2 diabetes in individuals with high serum Fetuin A levels was reported (Stefan et al., 2006).

Fetuin A is an independent risk factor for developing diabetes (Eraso et al., 2010). Additionally, further studies have emphasized that there may be an association between Fetuin A levels and peripheral arterial disease (PAD) (Lorant et al., 2011).

Fetuin A is secreted into the blood stream and it is deposited as a noncollagenous protein in mineralized bones and teeth. Fetuin A acts as an important circulating inhibitor of ectopic calcification that is a frequent complication of many degenerative diseases (Schafer et al., 2003).

Human Fetuin A represents a natural inhibitor of tyrosine kinase activity of the insulin receptor. Fetuin A may play a significant role in regulating postprandial glucose disposal, insulin sensitivity, weight gain, and fat accumulation and may be a novel therapeutic target in the treatment of type 2 diabetes, obesity, and other insulin-resistant conditions (Rasul et al., 2012).

Association has been proposed to exist among increased of concentration of Fetuin A, obesity and fatty liver. This is explained by the fact that fetuin A inducesInsulin resistance which is the primary abnormality leading to bothmetabolic syndrome and fatty liver disease. Accumulation off at in adipocytes leads to increased fetuin secretion (Reinehr and Roth, 2008).

Fetuin A levels would associate with this early indicator of NAFLD, as well as serum liver enzymes levels circulating Fetuin A levels elevates in subjects with high liver fat and decrease in liver fat was accompanied by decrease in Fetuin A concentrations (Stefan et al., 2006).

Fetuin A can be used in the diagnosis and treatment of joint arthritis as it is considered an acute phase glycoprotein, directed scientific attention regarding its which antiinflammatory role (Pappa et al., 2017).