

Venous-Arterial PCO₂ Difference as an Early Predictor of Organ Dysfunction in Critically III Septic Patient

Thesis

Submitted for fulfillment of the master degree in Critical care medicine

Presented by

Mohammed Gamal Fouad El-Nazer M.B. B.Ch. Menofya University

Under Supervision of

Prof. Dr. Hesham Mohammed Elazzazi, MD

Prof. of anesthesiology, intensive care and pain management, Faculty of Medicine, Ain Shams University.

Dr. Ashraf Ahmad Abd El-Hamid Abou Slemah

Lecturer of anesthesiology, intensive care and Pain Management Faculty of Medicine, Ain Shams University.

Dr. Eeman Aboubakr ElSiddik Ahmed Bayoumi

Lecturer of anesthesiology, intensive care and Pain Management Faculty of Medicine, Ain Shams University.

Faculty of medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

List of contents

List of Tables	VI
List of Figures	VII
List of Abbreviations	VIII
Abstract	XI
Introduction	1
Aim of the work	4
Patient And Methods	36
Results	39
Discussion	66
Summary	85
Conclusion	88
References	90
Arabic Summary	

Dedication

This work is dedicated to the individuals who have given meaning to my life;

To my mother and my father, who helped me in every step of my life.

To my wife ,who encouraged me to complete this work

To my brother and sister, who supported me in my life

To my daughter, Lama, who made my days to shine

To my colleges and all my friends, who helped me

Mohamed Gamal

Acknowledgement

Praise and thanks to ALLAH for all countless gifts ,I have been offered, one of these gifts is accomplishing this research work.

I am very grateful to *Prof. Dr. Hesham Mohammed Elazzazi*, Prof. of anesthesiology, intensive care and pain management, Faculty of Medicine, Ain Shams University, for his sincere co-operation, unlimited help and continuous guidance during this work.

I am so grateful to *Dr. Ashraf Ahmad Abd El-Hamid Abou Slemah*, Lecturer of anesthesiology, intensive care and Pain Management Faculty of Medicine, Ain Shams University, For his valuable help and guidance in the course of this research. His sincere efforts will never be forgotten.

Really and from my heart, I am deeply grateful to *Dr. Eeman Aboubakr ElSiddik Ahmed Bayoumi,* Lecturer of anesthesiology, intensive care and Pain Management, faculty of medicine, Ain Shams University, for her valuable efforts and advices in all steps of this work

Finally, my best regards to all my *family* for their endless encouragement, help and support.

Mohamed Gamal

List of Tables

Table (1): Differences between delta PCO ₂ groups regarding age	39
Table (2): Differences between the delta PCO ₂ groups regarding gender	40
Table (3): Relation Between The Delta PCO ₂ Groups Regarding Patient Group	
(Cause Of Admission)	41
Table (4): Differences between the delta PCO ₂ groups regarding surgical	
comorbidity	42
Table (5): Differences between delta PCO ₂ groups regarding hemodynamics	44
Table (6) :Differences between the delta PCO ₂ groups regarding mechanical	
ventilation	45
Table (7): Differences between the delta PCO ₂ groups regarding need for	
inotropic drugs	46
Table (8) :Differences between delta PCO ₂ groups regarding laboratory	
investigations.	47
Table (9): Differences between delta PCO ₂ groups regarding critical care	
scoring systems	48
Table (10) :Differences between delta PCO ₂ groups and presence of	
complications	49
Table (11): Differences between the delta PCO ₂ groups regarding number of	
organ dysfunction in ICU	49
Table (12): Differences between delta PCO ₂ groups in the first 24 hs and last 24	
hs regarding type of organ dysfunction in the ICU	52
Table (13): Differences between delta pco2 groups regarding outcome in ICU	53
Table (14): Differences between first and last readings of delta PCO ₂	54
Table (15): Differences between first and last reading of SOFA score	54
Table (16): shows correlations of delta PCO ₂ with different quantitative	
variables:	55
Table (17): The correlation between delta PCO ₂ and all quantitative variables	56
Table (18): Logistic regression for predictors of outcome in ICU.	57
Table (19) :Logistic regression for predictors of complications in ICU	58
Table (20) Logistic regression for predictors of inotropic use in ICU	59
Table (21) Logistic regression for predictors of CVS dysfunction in ICU	60
Table (22) Logistic regression for predictors of CNS dysfunction in ICU	61
Table (23): Logistic regression for predictors of renal dysfunction in ICU	62
Table (24): Logistic regression for predictors of hepatic dysfunction in ICU	63
Table (25): Logistic regression for predictor of coagulation dysfunction in ICU	64
Table (26): logistic regression for predictors of respiratory dysfunction in the	
ICU	65
Table (27): Most predictor variables for organ dysfunction ,outcome ,and	
complications in ICU.	66

List of Figures

Figure (1): Oxygen transport from atmosphere to mitochondria	9
Figure (2): Influence of intercapillary distance on the effects of	
hypoxia, anaemia, DO2 is reduced by anaemia or low	
blood flow	. 10
Figure (3):Relationship between oxygen delivery and	
consumption	. 15
Figure (4): Suggested initial approach to the management of	
patients with severe sepsis and septic shock	. 34
Figure (5) :Percentage of gender distribution in admitted	
patients in ICU.	. 40
Figure (6): Differences between both groups of delta PCO ₂	
regarding sepsis	. 41
Figure (7): Error bar showing differences between mean and	
SD of RBS of both PCO ₂ groups	. 47
Figure (8): Error bar showing differences between mean and SD	
of APACHE II score of both PCO ₂ group	. 48
Figure (9): Differences between both groups of delta PCO ₂	
regarding number of organ dysfunctions in ICU	. 50
Figure (10) :Differences between both delta PCO ₂ groups	
regarding CVS dysfunction	. 51
Figure (11): Differences between both groups of delta PCO ₂	
regarding outcome	. 53

List of Abbreviations

(CO2t: Carbon dioxide tension

(VC-A PCO2): Central venous-arterial PCO2

ABG: Arterial blood gases **ALT**: Alanine transaminase

APCO2: Delta PCO2

APS: Acute Physiology Score **AST**: Aspartate transaminase

avPCO2: Arterio-venous difference in CO2 pressure

AVpн: Arterio-venous pH **BSA**: Body surface area

BUN: Blood Urea Nitrogen

CaCO2: Arterial CO2 content

CaO2: arterial 02 Content

Carbon dioxide

CBC: Complete blood count

CD02 : Critical Oxygen delivery

CKD: Chronic Kidney disease.

CLD: Chronic lung disease.

CNS: Central Nervous System

CO2: Carbon dioxide

CPR: Cardiopulmonary Resuscitation

CvO2: mixed venous 02 Content

CVS: Cardiovascular System

DBP: Diastolic blood pressure

DM: Diabetes mellitus

DNA: Deoxyribonucleic acid

DO2: oxygen delivery

FiO2: Fraction of Inspired Oxygen

GCS: Glasgow coma score

GDT: Goal-directed therapy

GIT: Gastrointestinal Tract

gm/1: Gram per liter

List of Abbreviations (Cont..)

H+: Hydrogen ions
Hb: haemoglobin
Hco3: Bicarbonate

Hct %: Hematocrite Percent

HR: Heart rate

Hs: Hours

HTN: Hypertension

ICU: Intensive Care Unit

INR: International normalized ratio

 \mathbf{K} : potassium

KV: Mass transfer coefficient

LOS: Length of stay

mmHg: Millimeter mercury

MODS: Multiple Organ Dysfunction Syndrome

MPM: Mortality Probability Model

MV: Mechanical Ventilation

Na: Sodium

NIRS: Near infrared spectroscopy,

NRTIs: Nucleoside reverse transcriptase inhibitors

OER: oxygen extraction ratio

P (cv-a) Co2: Central venous -arterial PCO2

PA02: alveolar PO2

Pa02: Partial Oxygen Tension In Arterial Blood

Paco2: Pressure of carbon dioxide in arterial blood

Pco2: Partial Pressure of Carbon Dioxide

PE02: mixed expired PO2

PECO2: mixed expired PCO2

Pi02: Pressure of inspired oxygen

PLT: Platelets

PO2: Oxygen partial pressure (kPa)

P-Value: Probability value

PVCO2: Pressure of carbon dioxide in venous blood

List of Abbreviations (Cont..)

Qt: cardiac output

RBS: Random blood sugar

RR: Respiratory rate

Sa02: arterial so2

SAPS: Simplified Acute Physiology score

SBP: Systolic blood pressure

SCCM: Society of Critical Care Medicine

SD: Standard Deviation

SGOT: Serum glutamic oxalacetic transaminase

SGPT: Serum glutamic pyruvic transaminase

SO2: (%) oxygen saturation

SOFA: Sepsis-Related (sequential) organ Failure

SPSS: Social scientific software program

SV: Stroke or systolic volume

Sv02: Mixed venous S02

Svc02: Central venous so2

TLC: Total leucocytic count

USA: United states of America

VAPCO2(V-a PCO2): Mixed Venous or venous-arterial PCO2

vCo2: CO2 production

VO2: oxygen consumption

WBC: White Blood Cells

APACHE: Acute Physiology And Chronic Health

ACCP: American College of Chest Physician

ATP: Adenosine triphphosphate

MABP: Mean arterial blood pressure

CI: Cardiac index

CO: Cardiac output

Abstract

Introduction: The early identification and scrupulous monitoring of tissue dysoxia can improve the management of critically-ill patients. In this light, the final product of aerobe and anaerobe metabolism (that is, carbon dioxide) can provide useful information on adequacy of tissue perfusion and metabolism. *The aim of our study* was to evaluate whether the venousarterial PCO₂ gradient provides useful information on tissue dysfunction in patients admitted to the ICU. Methods: We prospectively studied 50 patients admitted to ICU in 2017/2018 with length of stay (LOS) >24 hours. A sample of arterial and venous blood was taken for gas analysis at admission. Venous-arterial PCO₂ gradient (\triangle PCO₂), organ dysfunction in the first 24 hours and ICU mortality were collected. Organ dysfunction was defined as a SOFA score ≥ 2 for each organ. The patients were subdivided and compared on the basis of \triangle PCO₂ value: \triangle PCO₂ \ge 6 mmHg (Higher group) and \triangle PCO₂ <6 mmHg (*Normal* group). **Results:** Twenty-nine patients (58%) showed a $\triangle PCO_2 \ge 6$ mmHg (*Higher* group) and twenty-one patients (42%) showed a \triangle PCO₂ \leq 6 mmHg (*Normal* group). The *higher* group showed a larger rate (34%) of cardiovascular dysfunction than the Normal group (8%)(P value < 0.05). Respiratory dysfunction was observed in 54% of the patients of the High group and only in 32% of the Normal group. Similarly, renal dysfunction was also slightly larger in the Higher group (26%) than in the Normal group (20%) (P value> 0.05). As expected, patients of higher group showed more complications (52%) than Normal group (32%) (P value > 0.05) and ICU mortality (40%) three times larger than Normal group (12%) (P value < 0.05). Conclusions & Recommendations: Despite its limitations, The above data support the hypothesis that Δ PCO₂ can provide useful information on the tissue perfusion and metabolism in ICU patients and can be used as a reliable biomarker for early prediction of organ dysfunction and outcome in critically-ill patients. But, further studies on a larger number of patients are needed to confirm its reliability. Limitations: Our study was done on a small sample size and based on a pre-defined set of study parameters, which might not have reflected the true nature of general changes observed in sepsis.

Key words: Dysoxia - Shock - Delta PCO₂ - Haemodynamics - Scoring systems - Organ dysfunction - Clinical outcome.

Introduction And Aim of Work

Introduction

The identi cations of tissue hypoxia and hypoperfusion play important roles in the management of critically ill patients during early resuscitation. Global metabolism measurements that are derived from blood gas analyses are the frequently practical methods for assessing global anaerobic metabolism (Cuschieri et al., 2005).

Resuscitation may be guided by indicators of tissue hypoxia, such as central venous oxygen saturation, which re ects important changes in the relationship between delivery and consumption of oxygen (DO₂/VO₂). Signi cant uctuations in ScvO₂ (central venous oxygen saturation) may occur during sepsis, and high ScvO2 values do not necessarily re ect intracellular utilization perfusion changes oxygen and of the microcirculation. Persistent tissue hypoperfusion caused by microcirculatory and mitochondrial failure may occur in the presence of normal or increased ScvO₂ (Huai et al., 2016).

Which may therefore limit the usefulness of ScvO2 in clinical practice. Normalization of systemic hemodynamic and oxygen metabolism variables does not ensure an adequate tissue perfusion and does not prevent progression to multiorgan dysfunction and death (Lamia et al., 2006).

Central or mixed venous–arterial carbon dioxide partial pressure difference ($\triangle PCO_2$) has also been used to guide the treatment of shock (Marit *et al.*, 2015).

 Δ PCO₂ is the difference between the partial pressure of CO₂ in mixed venous blood or central venous blood (PvCO₂ or PcvCO₂) and the partial pressure of CO₂ in arterial blood (PaCO₂): Δ PCO₂ = PvCO₂ – PaCO₂. PaCO₂ and PvCO₂ represent only a fraction of arterial CO₂ content

(CaCO₂) and central venous CO₂ content (CvCO₂), respectively, but as the relationship between partial pressure and content of CO₂ is almost linear under normal physiological conditions, PCO₂ can be taken as a measure of CCO₂. At the cellular level, CO₂ is a normal terminal product of oxidative metabolism. Thus, in the absence of a shunt, CCO₂ in the ef uent venous blood must be higher than in the afferent arterial blood. Therefore, the difference between central venous blood and arterial blood PCO₂ (Δ PCO₂) may be considered as a marker of the global hemodynamic status (**Monnet** *et al.*, **2013**).

The Fick equation applied to CO_2 indicates that the CO_2 excretion (equivalent to CO_2 production in a steady state) equals the product of cardiac output (CO) and the difference between the PCO_2 content in mixed venous blood ($CvCO_2$) and in arterial blood ($CaCO_2$): $VCO_2 = CO \times (CvCO_2 - CaCO_2)$. In the equation $\Delta PCO_2 = VCO_2 \times k/CO$, k is assumed to be constant, and ΔPCO_2 is linearly related to CO_2 production and inversely related to CO_2 . Therefore, if cardiac output is low than normal, ΔPCO_2 is expected to be abnormally high i.e. More than 6mmHg (**Puskarich** *et al.*, 2011).

A reverse correlation have been found between [P(cv-a)CO₂] and cardiac index with a central venous blood sample and so, a sample of central venous blood could be used instead of blood from the pulmonary artery for this purpose (Vallee *et al.*, 2008).

Global indices of tissue perfusion include lactate and central venous oxygen saturation (SvcO₂). But, the mixed V-APCO₂ difference cannot serve as a marker of tissue hypoxia. But, it can be considered as a marker of the adequacy of venous blood flow (i.e. cardiac output) to remove the total CO₂ produced by the peripheral tissues. In this regard, the knowledge

of Delta PCO₂ should help the clinicians for the decision of giving therapy aimed at increasing cardiac output (Vallet *et al.*, 2000).

Elevated V-a PCO₂ has also been described in patients with sepsis, cardiogenic shock, acute myocardial infarction, and congestive heart failure, as well as cardiac arrest following cardiopulmonary resuscitation (CPR) and heart surgery (Victor *et al.*, 2009).

Interestingly, central venous-arterial PCO₂ (Pcv-aCO₂), has recently been proposed as a useful tool for goal directed therapy (GDT) in ICU-septic patients to identify persistent hypoperfusion when saturation of central venous oxygen (ScvO₂) > 70% has been reached Although oxygen delivery (DO₂) in septic shock can be elevated, oxygen consumption (VO₂) is impaired as a consequence of mitochondrial dysfunction in sepsis (Wei *et al.*, 2013).

The venoarterial CO₂ gradient (V-a PCO₂) is influenced by two other factors: the dissociative curve of CO₂ and tissue blood flow. The curve of CO₂ dissociation from hemoglobin follows the so-called **Haldane's effect**, in which oxygen and its bonding with hemoglobin allows easier release of CO₂ in lungs. Experimental models have shown that in toxemia, venous hypercapnia is a more significant contributor to the increase in the venoarterial CO₂ gradient than arterial CO₂ values (**Antonelli** *et al.*, **2007**).