

Approval Sheet

Name of candidate: Mai Saleh Abd-El-Maqsoud

<u>Degree:</u> M. Sc. Degree for Teacher's Preparation in Science (Physical Chemistry)

<u>Thesis Title:</u> Removal of some organic pollutants from environmental liquid wastes using photo-catalytic method

This Thesis has been approved by:

Approved

Prof. Dr. Mostafa Mahmoud Emara:

Prof. of physical Chemistry, Faculty of science, El-Azhar University.

Dr. Nabil Hefny Amin:

Ass. Prof. of Physical Chemistry, Faculty of Education, Chemistry Department, Ain-Shams University.

Dr. Sameh Mohamed Kamel Aboul Fotouh:

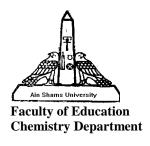
Ass. Prof. of Physical Chemistry, Faculty of Education, Chemistry Department, Ain-Shams University.

Prof. Dr. Mostafa Ismsael:

Head of Chemistry Department, Faculty of Education, Ain Shams University.

Removal of some organic pollutants from environmental liquid wastes using photo-catalytic method

Thesis Submitted


By Mai Saleh Abd-El-Maqsoud B.Sc., Ed. 2007

For
The Degree of
Master of Teacher's Preparation in Science
(Physical Chemistry)

To

Chemistry Department Faculty of Education Ain Shams University Cairo, Egypt

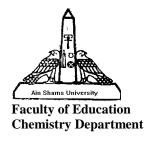
2012

Removal of some organic pollutants from environmental liquid wastes using photo-catalytic method

By Mai Saleh Abd-El-Maqsoud B.Sc., Ed. 2007

Under the Supervision of:

Prof. Dr. Mostafa Mahmoud Emara:


Prof. of physical Chemistry, Faculty of science, El-Azhar University.

Dr. Nabil Hefny Amin:

Ass. Prof. of Physical Chemistry, Faculty of Education, Ain Shams University.

Dr. Sameh Mohamed Kamel Aboul Fotouh:

Ass. Prof. of Physical Chemistry, Faculty of Education, Ain Shams University

Title Sheet

Name of researcher : Mai Saleh Abd-El-Maqsoud

<u>Date of Birth</u> : 1/9/1986

<u>Place of Birth</u> : Cairo

First University Degree: B.Sc. & Ed., May 2007

Name of University : Ain Shams

Abstract

Removal of Some Organic Pollutants from environmental liquid wastes using photocatalytic method

By

Mai Saleh Abd El - Maqsoud

Department of Chemistry, Faculty of Education Ain – Shams University, Roxy, Cairo, Egypt.

The present work explains the preparation of ZnO catalyst by direct precipitation method using different precipitating agents such as ammonium hydroxide, sodium hydroxide & urea respectively with zinc nitrate and modified ZnO by supporting ZnO/SiO₂ different ratios. The prepared catalysts were dried overnight at 373 K and calcined at 500°C. The Calcined catalysts were characterized using the common techniques such as XRD, FITR, SEM, surface texturing (N₂ adsorption), TGA and TEM. The catalytic activities of the characterized catalysts were investigated in the photodegradation of levafix brilliant red dye, reactive black 5 and reactive orange 96 from the textile industry at different experimental conditions (variation of catalyst doses, dye conc., pH and addition of H₂O₂). The obtained data indicate that samples prepared from urea exhibits the higher activity when compared with the other pure ZnO samples, While ZnO/SiO₂ (0.05 wt %) exhibits the highest activity.

Keywords:

ZnO synthesis, Reactive, photodegradation, Textile wastewater.

Thanks always are to Allah

My special appreciation goes to my dear parents and my sister for their encouragement. Also I thank my husband who supports me to produce this work. I would like to express my deepest Sincere of gratitude to Prof. Dr. Mostafa. M. Emara, professor of Physical Chemistry, Chemistry Faculty of Science, Al-Azhar University not only for suggesting and planning the scope of the research but also for his kind, supervision, guidance and constructive criticisms during the course of this work.

I would like to express my deepest Sincere of gratitude to Dr. Nabil Hefny Amin, Ass. Prof. of physical Chemistry, Faculty of Education, Ain Shams University, not only for suggesting and planning the scope of the research but also for his kind, supervision, guidance and constructive criticisms during the course of this work.

I would like to express my deepest Sincere of gratitude to Dr. Sameh

Mohamed Kamel Aboul-Fotouh, Ass. Prof. of physical Chemistry,

Faculty of Education, Ain Shams University, not only for suggesting

and planning the scope of the research but also for his kind, supervision, quidance and constructive criticisms during the course of this work.

I would like to express my deepest Sincere of gratitude to Dr. Medhat

Mohamed El-Moselhy Ahmed, Ass. Prof. of Physical Chemistry, Faculty

of Science, Al-Azhar University for his kind, supervision, guidance and

continuous help during the course of this work.

I would like to express my deep gratitude to our colleagues in SCDREHLAB for their help in the experimental part.

Thanks are also due to all staff members of Chemistry department especially Prof. Dr. Anwar Amin Prof. of physical Chemistry, Faculty of Education, Ain Shams University, for helping me in surface properties measurements.

Many thanks and grateful to Dr. Hafez El-Shaer, Ass. Prof. of organic Chemistry, Faculty of Education, Ain Shams University, for helping in quantum measurements.

I am also extended to Prof. Dr. Mostafa Ismail, Head of chemistry department, Faculty of Education, Ain Shams University, for facilities provided during the course of research work.

I am also extended to Prof. Dr. Saied Khalil, Vice Dean for Graduate studies, Faculty of Education, Ain Shams University, for facilities provided during the course of research work.

Contents

ACKNOWLEDGMENTS	
Abstract	iv
LIST OF FIGURES	V
LIST OF TABLES	ix
LIST OF SYMBOLS	X
Aim of the work	xi

Chapter I	
Introduction and Literature Review	_
1.1.1. Concept of water pollution	1
1.1.2. River water pollution	2
1.1.3 . Industrial water pollution	3
1.1.4. MAJOR IMPORATANT POLLUTANTS	3
1.1.5. CLASSIFICATION OF MAJOR POLLUTANTS	5
1.1.6. Dyes Pollution	6
1.1.7. The classification of Dyes	8
1.1.8. The bad side effect of using Dyes	10
1.1.9. Methods of dye removal	11
1.1.10. Dyes under investigation	24
1.1.11. THEORETICAL BACKGROUND	27
1.2.1 literature survey on ZnO catalyst	29
1.2.2. Preparation of ZnO	34
1.2.3. Applications of ZnO	36
1.2.3.1. MEANING OF PHOTOCATYSIS	39
1.2.3.3.PRINCIPLE OF PHOTOCATALYSIS	42
1.2.3.4. HISTORY OF PHOTOCATALYSIS	43
1.2.3.5. HETEROGENEOUS PHOTOCATALYSIS	45
1.2.3.6. HOMOGENEOUS PHOTODEGRADTION	47
1.2.3.7. PHOTOCHEMICAL PROCESSES	47

1.2.3.8 REACTIVE OXYGEN SPECIES (ROS)	49
1.2.3.9.EXTERNAL PARAMETERS FOR INCREASING THE	52
EFFICIENCY OF THE PROCESS	
1.3.10.KINETICS STUDIES	53
1.3.11.RATE-DETERMINING STEP (SEE ALSO "FIRST-	58
ORDER KINETICS")	
Chapter II	
Experimental	
2.1.Compounds under investigation	60
2.2. Chemicals	61
2.3. Experiment instrumentation	62
2.2.1 Datab trima mbata magatan	62
2.3.1.Batch type photo-reactor	02
2.3.2.UV-Viscible spectroscopy	63
2.3.3.pH measurements	63
2.3.5.X-ray diffraction analysis	63
2.3.6.IR spectroscopy	64
2.4. Samples preparation	64
2.4.1.ZnO Catalysts preparation	64
2.4.1.ZnO/SiO ₂ Catalysts preparation	65
2. 4.2. Dyes preparation	65
2.4.3.preparation of H ₂ O ₂ solutions	65
2.5.Photodegradation experimental	66

2.5.1.Irradiation experiments	66
Chapter III	
1.Characterization	
3.1.1. X-ray diffractograms	67
3.1.2. IR spectra of various samples	70
3.1.4. SEM analysis	73
3.1.5Textural properties	76
2.Results & Discussion	
3. 1. Photocatalytic degradation	86
3. 2. Adsorption Isotherms	88
3. 3. Levafix Brilliant Red dye degradation	90
3. 3. 1. Photostability of LBR dye	90
3. 3. 2. Photocatalytic degradation of LBR dye with H2O2	90
3. 3. 3. Photodegradation of LBR dye using ZnO and ZnO-Silicates	92
catalysts	
3. 3. 4. Effect of pH on the degradation of LBR dye (10-4M)	98
3. 3. Kinetics studies of degradation of LBR dye	110
3. 3.1. Effect of the various parameters on kobs	118
3. 4. Reactive Black 5	127
3. 5. Reactive Orange 96	131
Appendix :Photodegradation	138

LIST OF FIGURES

Introduction and Literature Review	
Figure 1: A simplified view of water cycle	2
Figure 3: Optimization structure of LBR dye	28
Figure 4: Optimization structure of RB5 dye	28
Figure 5: Optimization structure of RO96 dye	28
Figure 6: Mechanism of photocatalysis	42
Figure 7: Irradiated semiconductor particles	46
Figure 8: Contributions to photocatalysis from various sub-disciplines of Chemistry.	48
Experimental	
Figure 9:Experimental setup for the photocatalytic dye	62
degradation	62
Results and Discussion	
Catalyst Texturing	
Figure 10: XRD diffraction patterns of ZnO and ZnO-SiO ₂	69
Figure 11: FTIR of ZnO and ZnO/SiO ₂ catalysts	72
Figure12a: SEM micrographs of ZnO (NH ₄ OH)	
Figure12b: SEM micrographs of ZnO (NaOH)	74
Figure12c: SEM micrographs of ZnO (Urea)	
Figure 13 a: SEM micrographs of 0.05 wt% ZnO/SiO ₂	
Figure 13 b: SEM micrographs of 0.10 wt% ZnO/SiO ₂	75
Figure 13 c: SEM micrographs of 0.15 wt% ZnO/SiO ₂	
Figure 14: Isotherms for ZnO\SiO ₂ prepared samples.	82
Figure 15: Isotherms for ZnO prepared samples.	83
Figure 16: V _L - t-curves for ZnO and ZnO/SiO ₂ samples	84
Figure 17: The pore volume distribution curves for ZnO	85
and ZnO/SiO ₂ samples	
Photodegradation	
Scheme 1: Plan of the work	86
Figure 18: Transformation of Langmuir isotherm for 10 ⁻⁴ M LBR dye	89
Figure 19: UV-VIS spectra of LBR dye	91

TI 00 D 1 1 C (1041 D 1 D 1 1 C	0.1
Figure 20: Degradation of (10 ⁻⁴ M) LBR dye in presence of different concentrations of H ₂ O ₂ and versus time.	91
Figure 21: degradation of LBR dye over different concentrations of	94
ZnO(urea): (a) concentration versus time	
(b) % degradation of LBR dye versus time	
Figure 22: Effect of ZnO/ SiO ₂ concentration on the	96
photocatalytic degradation of LBR dye	
Figure 23: % degradation of LBR dye (10 ⁻⁴ M) and variable concentrations of ZnO/SiO ₂ versus time	97
Figure 24: Variation of pH during the degradation of LBR dye using different concentrations of ZnO	101
Figure 25: Variation of pH during the degradation of LBR dye using different concentrations of H ₂ O ₂	101
Figure 26: Variation of pH during the degradation of LBR dye using different concentrations of: (a) (0.05 wt %) ZnO/SiO ₂ , (b) (0.1 wt %) ZnO/SiO ₂ and (c) (0.15 wt %) ZnO/SiO ₂	102
Figure 27: Photodegradation of LBR (10 ⁻⁴ M) in presence of 0.05 g ZnO catalysts and H ₂ O ₂ (10 ⁻⁴ M) at different pH	103
Figure 28 : % degradation of LBR dye (10 ⁻⁴ M) versus time over 0.05g of ZnO catalysts /200ml of (10 ⁻⁴ M) LBR at different pH	104
Figure 29: Photodegradation of LBR (10 ⁻⁴ M) at different pH (2, 4, 6and 10) in presence of 0.05 g of ZnO catalysts and H ₂ O ₂ (10 ⁻⁴ M)	105
Figure 30: %degradation of LBR (10 ⁻⁴ M) at different pH (2, 4, 6 and 10) in presence of H ₂ O ₂ (10 ⁻⁴ M) 0.05 g of ZnO catalysts	106
Figure 31: Photodegradation of LBR (10 ⁻⁴ M) in presence of 0.05 g (0.15, 0.1 and 0.05 wt %) ZnO/SiO ₂ and H ₂ O ₂ (10 ⁻⁴ M) at different pH	107
Figure 32 : % degradation of LBR (10 ⁻⁴ M) in presence of 0.05 g	108
(0.15, 0.1and 0.05 wt %) ZnO/SiO ₂ , H ₂ O ₂ (10 ⁻⁴ M) at different pH	

Figure 33: Photodegradation of LBR dye (10 ⁻⁴ M) in presence of H ₂ O ₂ (10 ⁻⁴ M) and 0.05 g of ZnO/SiO ₂ catalysts at different pH	109
Scheme 2: The principle pathways of dye degradation	110
Figure 34: Kinetics of photodegradation of LBR at constant pH in the presence of different concentrations of H ₂ O	112
Figure 35: Kinetics of photodegradation of LBR at constant pH in the presence of different concentrations of ZnO (urea)	112
Figure 36: Kinetics of photodegradation of LBR in the presence of H_2O_2 ($10^{-4}M$) and ZnO (urea, NH ₄ OH & NaOH) at: (a) pH=2 and (b) pH=4	113
Figure 37: Kinetics of photodegradation of LBR in the presence of H ₂ O ₂ (10 ⁻⁴ M) and ZnO (urea, NH ₄ OH and NaOH) at: (a) pH=6 and (b) pH=10	114
Figure 38: Kinetics of photodegradation of LBR at different pH in the presence of (a) ZnO (NH ₄ OH), (b) ZnO (NaOH) and ZnO (urea)	115
Figure 39: Kinetics of photodegradation of LBR dye at different pH in the presence of: (a) (0.05wt %) ZnO/SiO ₂ , (b) (0.1wt %) ZnO/SiO ₂ and (c) (0.15wt %) ZnO/SiO ₂	116
Figure 40: Kinetics of photodegradation of LBR at constant pH in the presence of different weight of: (a) (0.05wt %) ZnO/SiO ₂ , (b) (0.1wt %) ZnO/SiO ₂ and (c) (0.15wt %) ZnO/SiO ₂	117
Figure 41: k against at different concentrations of H ₂ O ₂ for degradation of LBR dye	118
Figure 42: k against ZnO (urea) for degradation of LBR dye at fixed 10^{-4} M H_2O_2	121
Figure 43: k against (0.05 wt %) ZnO/SiO ₂ for degradation of LBR dye at fixed 10 ⁻⁴ M H ₂ O ₂	121
Figure 44: k against (0.1 wt %) ZnO/SiO ₂ for degradation of LBR dye at fixed 10 ⁻⁴ M H ₂ O	122
Figure 45: k against (0.15 wt %) ZnO/SiO ₂ for degradation of LBR dye at fixed 10 ⁻⁴ M H ₂ O ₂	122
Figure 46: k against pH for degradation of LBR dye at 0.05 g of: (a) ZnO (NH ₄ OH), (b) ZnO (urea) and (c) ZnO (NaOH)	125

Figure 47: k against pH for degradation of LBR dye at 0.05 g of:	126
(a) $(0.05 \text{ wt }\%) \text{ ZnO/SiO}_2$, (b) $(0.1 \text{ wt }\%) \text{ ZnO/SiO}_2$ and	
(c) (0.15 wt %) ZnO/SiO ₂	
Figure 48: UV-VIS spectra of LBR dye	127
· · ·	
Figure 49: Adsorption of 10 ⁻⁴ M RO96	128
Figure 50: Photodegradation of RB5 (10 ⁻⁴ M) using ZnO (Urea)	129
and (0.05wt %) ZnO /SiO ₂ at pH=4 in presence of H ₂ O ₂	
$(10^{-4} \mathrm{M})$	
Figure 51: % Photodegradation of RB5 (10 ⁻⁴ M) using ZnO (Urea)	130
and (0.05 wt %) ZnO/SiO ₂ at pH=4 in presence of H_2O_2	
(10^{-4} M)	
Figure 52: Kinetics of RB5 (10 ⁻⁴ M) using ZnO (Urea) and (0.05	131
wt %) ZnO /SiO ₂ at pH=4 in presence of H_2O_2 (10 ⁻⁴ M)	
Figure 53: UV-VIS spectra of RO96 dye	132
Figure 54: Adsorption of 10 ⁻⁴ M RO96	133
Figure 55: Photodegradation of (10 ⁻⁴ M) RO96	134
Figure 56: % Photodegradation of (10 ⁻⁴ M) RO96	134
Figure 57: Kinetics of (10 ⁻⁴ M) RO96	134