An in-vitro Study to Evaluate the Bond Strength Difference between Glass Fiber Post and Fiber Reinforced Strip (Etched and Non Etched)

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University for Partial Fulfillment of the Requirements of the Master's Degree in Orthodontic and Pediatric dentistry.

By Shereen Ahmed Khairy Al-Ghayesh

Faculty of Dentistry
Ain Shams University, ۲۰۰٦

Supervisors

Dr. Amr M. Abdelaziz.

Professor of Pediatric dentistry department, Faculty of Dentistry, Ain Shams University.

Dr. Dalia I. Al-Korashy

Associate Professor of Dental Biomaterials, Faculty of Dentistry, Ain Shams University This thesis is dedicated to...

My mother, to my father my first word for their love and support, to my sister and brothers my first friends and to my husband for his encouragement and understanding.

And last but not least my beloved sons

Ahmed and Zeyad

Acknowledgement

First and foremost thanks are due to **ALLAH** the most beneficent and most merciful.

I am greatly honored to express my gratitude to **Dr. Amr M.Abdelaziz,** Professor of Pediatric dentistry and dean of Pediatric and Orthodontic department, Faculty of Dentistry, Ain Shams University for his continuous encouragement and guidance.

I would like to express my deepest gratitude to **Or. Dalia I. A- Korashy** Assistant Professor of Dental biomaterials, Ain Shams
University, for her support, meticulous advice, valuable comments and unlimited guidance throughout this work. She was generous with time and effort.

Finally, I would like to thank all the staff members, colleagues and laboratory technicians for their help and encouragement during the course of this work.

List of Contents:

List of Figures	ii
List of Tables	v
Introduction	
Review of literature	٣٣
Aim of the study	٣٦٣٦
Materials and methods	٣٧
Results	oV
Discussion	V£
Summary and Conclusions.	۸۱۸۱
References	
Arabic summary	

List of Figures

Figure 1: Study set-up.
Figure 7: Samples of selected single-rooted teeth
Figure : Sample teeth after crown removal
Figure 4: A size to K-file was passively introduced into each root canal
until its tip was just seen from the apical foramen
Figure •: The working length was established by subtracting ' mm from
this length
Figure 7: Glidden drills (MANI Inc., Tochigi, Japan) were used in a
crown-down manner using size # £, T, and T respectively
Figure V: Fiberkleer post drill (Violet) (Pentron Clinical Technology
Wallingford, USA)
Figure A: Fiberkleer post (Pentron Clinical Technology Wallingford,
USA)
Figure 4: Custom made metallic mold were fabricated to accommodate
the acrylic resin block
Figure ' ·: Custom made paralleling device (parallelometer), root
attached to the lower tip of the parallelometer and fixed into acrylic resin

Figure \:\: Root attached to the lower tip of the parallelometer and fixed
into the custom made metallic mold to accommodate the acrylic resin
block
Figure 17: The acrylic block with the tooth was separated from the
mold
Figure ۱۳: Plastic root canal pins.
Figure 1: The size of the copper bands were selected to fit the samples,
giving approximately a 7 mm space around the circumference of the
roots
Figure 10: Plastic pins were used to carry the impression material inside
the root canals
Figure 17: Vectris units are supplied in a soft malleable form in light-
insulating packages
Figure 'V': 'Y mm of the Glass fiber rods were measured
Figure \A: The Glass fibers were cut with a sharp cutter to length of \Y
mm to leave [£] mm extended coronally for post handling
Figure 19: Glass fiber rods were removed using a tweezer
Figure Y .: Glass fiber rods were light cured using light transmitting
post
Figure 11: Targis Power oven
Figure YY: The posts were tried in their corresponding root specimens to
ensure complete seating and passive fit of the posts

Figure YY: Breeze cement and the auto-mix tip which was attached to the
double barrel syringe.
Figure 7 : The cement was light cured for 5 · seconds from the outer end
of the post using a halogen light curing unit
Figure Yo: The teeth with the bonded fiber post
Figure <a>'\': Custom aligning Teflon apparatus was fabricated to embed
each prepared root vertically within self-curing acrylic resin (top
view)
Figure YY: Custom aligning Teflon apparatus (side view)
Figure YA: Root attached to the lower tip of the parallelometer and fixed
into the custom made Teflon mold.
Figure 74: Perpendicular sectioning of root-post sets
Figure **: Horizontal sections of middle portion of * mm thickness each
were cut from each root
Figure "1: The thickness of the slices was measured using a digital
caliper
Figure TY: Sample were examined before testing to confirm a circular
canal shape and that the cement filled the entire canal space without voids
using a digital microscope at ¿·X
Figure "": This specimen was discarded and replaced with another root
due to presence of voids

Figure [¿] Y: A column chart of total push out bond strength mean values
for all group.
Figure [£] A: A column chart of total push out bond strength mean values
for coronal and middle region
Figure ^{£ 9} : A column chart of total push out bond strength mean values
for non-etched and etched group.
Figure • · : A column chart of push out bond strength mean values for
custom made group as function of surface treatment and radicular
region
Figure • 1: A column chart of push out bond strength mean values for
prefabricated group as function of surface treatment and radicular
region
Figure • 7: A column chart of total push out bond strength mean values
for all group ranked from higher to lower
Figure • ": A stacked column chart of frequent distribution (%) for
different failure modes
Figure • : Representative photograph of adhesive failure type for (non-
etched custom made post) group
Figure ••: : Representative photograph of mixed failure type for (non-
etched custom made post) group
Figure • ٦: Representative photograph of adhesive failure type for
(etched custom made post)
group

Figure • Y: Representative photograph of mixed failure type for (etched
custom made post) group
Figure • A: Representative photograph of adhesive failure type for (non-
etched prefabricated post) group
Figure • 4: Representative photograph of mixed failure type for (non-
etched prefabricated post) group
Figure 7: Representative photograph of cohesive failure type for
(etched prefabricated post)
group
Figure 71: Representative photograph of mixed failure type for (etched
prefabricated post) group
Figure '': Representative photograph of adhesive failure type for (direct
made post) group
Figure '': SEM for non-etched prefabricated fiber post (top view)
showing Non treated fiber post has a relatively smooth surface which
limits the micromechanical interlocking
Figure 7: SEM for prefabricated non treated fiber post post showing
fibers that are intact without cracking.
Figure %: SEM for prefabricated etched fiber post showing microcracks
and longitudinal fractures within the fiber layer
Figure 77: SEM for non-etched custom made fiber post showing fibers
that are intact without cracking.

Figure TY: SEM for etched custom made fiber post showing microcracks
and longitudinal fractures within the fiber layer
Figure 7. SEM for etched custom made fiber post (top veiw)before
cementation showing partial dissoliotion of the resinous matrix by the
HF acid that form rough surface
Figure \ SEM non-etched custom made fiber post (disc) showing
homogenus structure the three parts adhere to each other
Figure V ·: SEM for non-etched custom made fiber post note the less
mechanical interlocking with the cement
Figure YY: SEM for cemented etched custom made fiber post showing
dissolution of the post resin matrix that is filled with the resin cement to
its inner structure
Figure YY: SEM higher magnification for cemented etched custom made
fiber reinforced post note the micromechanical interlocking between
cement and the spaces created by the HF acid on the post surface
Figure YT: SEM (low magnification) for cemented direct-made custom
made fiber post showing very narrow cement space, incorporation of the
resin cement inside the post itself
Figure Y: SEM (higher magnification) for cemented direct-made custom
made fiber post note the incorporation of resin cement and lightly-packed
glass fibers
Figure Vo: SEM for cemented custom made fiber post note the almost
absence of hybrid layer and very narrow cemental space

Figure V1:
Figure YY:
Figure YA:
Figure V9:
Figure A.:
List of Tables
Table 1: Materials (manufacturers), descriptions and compositions
Table ₹: Showing the interaction between the experimental variables
Table ♥: Push out bond strength results (Mean±SD) for all groups as
function of surface treatment and radicular region
Table 4: Three factorial ANOVA comparing variables affecting push out
bond strength mean value
Table •: Push out bond strength results (Mean±SD) for all groups as
function of surface treatment at coronal region
Table 7: Push out bond strength results (Mean±SD) for all groups as
function of surface treatment at middle region
Table Y: Total push out bond strength results (Mean±SD) for all groups
Table ^: Comparison of total push out bond strength results (Mean±SD)
between coronal and middle region.

Table 9: Comparison of total push out bond strength results (Mean±SD)
between non-etched and etched groups
Table ': Push out bond strength results (Mean±SD) for custom made
group as function of surface treatment and radicular region
Table 11: Push out bond strength results (Mean±SD) for prefabricated
group as function of surface treatment and radicular region
Table 17: Group ranking (higher to lower) and interaction between
variables
Table \nable \nable : Frequent distribution (%) of failure modes for all groups
as function of radicular region
Table 1: Comparison of surface roughness results (Roughness average
Ra) between prefabricated and custom made posts as a function of surface
treatment

INTRODUCTION

he increase risk of biomechanical failure of the endodontically treated teeth could be related to the loss of a large part of the coronal tooth structure', which may be due to decay as (early childhood caries) or dental trauma ', E. The general protocol for fractured, non-vital anterior permanent teeth involves root canal treatment followed by protective permanent restorations for the coronal structure. Special situations arise in young patients when the pulps of anterior teeth lose vitality with resultant arrested development of the roots.

The open and sometimes divergent apical morphology and weak root dentine walls make endodontic procedures challenging, and presents restorative problems. It is important to preserve these weakened teeth in young patients[£].

In the majority of clinical situations, the placement of post serves protection of weakened tooth and adds additional retention for the coronal restoration.

Posts either prefabricated or custom made were traditionally made of metal and have been used in these situations to provide the necessary retention for the subsequent prosthodontic restoration. However their use resulted in complex combinations of materials (dentin,

١