REVIW OF KERATECTASIA AFTER LASIK

BY
Mohammed Fawzy Abdel wahab El-Hofy
M.B., B.CH.

Essay submitted for partial fulfillment Of the M.Sc. Degree in ophthalmology

Supervised by

Prof. Dr. Hassan El-Sammaa Youssef Ezz El-Din Professor of ophthalmology Faculty of Medicine Ain Shams University

> Dr. Hazem Mohammed Omar Rashed Lecturer of ophthalmology Faculty of Medicine Ain Shams University

> > FACULTY OF MEDICINE AIN SHAMS UNIVERSITY CAIRO 2007

تمدد القرنية التابع لعملية الليزك

الطبيب / محمد فوزي عبدالوهاب الحوفي بكالوريوس الطب والجراحة

توطئة للحصول على درجة الماجستير في طب وجراحة العيون

أ.د / حسن السماع يوسف عزالدين أستاذ طب وجراحة العيون كلية الطب_جامعة عين شمس

د/ حازم محمد عمر راشد مدرس طب وجراحة العيون كلية الطب جامعة عين شمس

كلية الطب جامعة_عين شمس القاهرة 2007

SUMMARY

LASIK is currently gaining acceptance as an effective surgical procedure for the correction of refractive errors. But it weakens the cornea from the mechanical aspect because of the inherent tissue ablation and the lamellar keratectomy involved in the procedure. This weakening can precipitate progressive anterior shift of the cornea - ectasia of the cornea

Several theories have been proposed to explain the development of this condition and to explain the biomechanical changes that occur due to corneal thinning by ablation. It was proposed that this biomechanical remodeling involves not only the mechanical aspects of the load-bearing collagen fibrils but also the hydration response of the stroma which is also affected by wound-healing response of the stromal cells.

Another theory was put forward and noting that the elastic deformation starts in the posterior surface and depends on inherent corneal factors, the intraocular pressure (IOP), and the ablation profile. And it was concluded that these changes rise proportionally with the

١..

AIM OF WORK

This review aims to evaluate the current knowledge relating to risk factors, pathogenesis and suggested recent trends in treatment of post-LASIK keratectasia.

ACKNOWLEDGEMENTS

After giving all thanks to ALLAH, I would like to acknowledge the contribution of the following people and organizations to my essay.

<u>Supervisor committee faculty at the department of ophthalmology at Ain Shams University:</u>

I have been particularly fortunate to have been associated with two of my idols and sincerely appreciate their efforts on my behalf. And I would like to express my deepest gratitude for their continuous help throughout the whole work, their kind supervision and advice, and their kind support.

Prof. Dr. Hassan El-Sammaa Youssef Ezz El-Din; Professor of ophthalmology

Dr. Hazem Mohamed Omar Mohamed Rashed; Lecturer of ophthalmology,

Librarians:

Mrs. Rasha Mohamed from the Ain Shams university department of Ophthalmology continued medical education center provided with valuable research assistance and I am deeply thankful for her role in preparation of this work.

Moral and spiritual support:

I am deeply thankful for the encouragement and prayers of my friends and family who persevered with me through every step of the work.

CONTENT

Introdu	cti	on	1
Chapter	· 1: I.	Biomechanical and biological responses to LASIK Corneal Biomechanics	
		Foundation of the biomechanical respons	2
		Corneal architecture	
		2. Corneal material properties	
		3. Corneal loading forces and the acute response to	
		keratectomy	5
	II.	Corneal wound healing	8
		Wound healing in LASIK and surface ablation The interface of wound healing and biomechanics	
Chapter	· 2:	Investigating corneal status	14
_	I.	Corneal Topography	14
		Methods	14
		Placido disk imaging	15
		2. Slit-scanning topography	16
		3. Scheimpflug imaging	17
		4. AstraMax, Three dimensional topography	19
		5. Artemis Ultasound, Digital topography	19
		6. Interferometric system7. The PAR corneal topography system (CTS) and	20
		Rasterphotogrammetry	20
		Normal topographic pattern	.23
		Abnormal topographic patterns	

1. Forme Frust	e Keratoconus (FFKC)23
2. Pellucid mar	ginal degeneration (PMD)24
3. Contact Lens	s Warpage26
4. Decentered	corneal apex26
5. Tear film abı	normalities27
II. Corneal thickness	s measurement27
Methods	28
	ional ultrasound (US)28
	(Bausch & Lomb) and Pentacam
(Oculus)	28
Intraoperative p	pachymetry29
III. Corneal Biomech	anics Assessment30
Methods	31
1. Corneal hyst	teresis (CH)31
2. The elastic n	nodulus (Young's modulus, E)34
3. Poisson's rat	tio (n)34
4. Grabner's dy	ynamic corneal imaging35
5. Electronic sp	peckle-pattern interferimetry35
Chapter 3: Reported cases	5.
8. Cases of	post-LASIK ectasia with abnormal
topograph	y36
9. Cases of p	oost-LASIK ectasia with RSB less than
300μm	41
10.Cases of	post-LASIK ectasia with Abnormal
topograph	y and RSB less than 300μm55
11.Cases of	post-LASIK ectasia with Abnormal
topograph	y , RSB less than 300μm and corneal
thickness I	ess than 500 μm64

	topography	post-LASIK , RSB more ore than 50	than 300µ	ım and	corneal
after co	rneal refracti	ave been esta ive surgery risk score syst		•••••	78
Chapter 4: Mana	gement of	postopera	tive ectas	sia	89
I. Prever	ntion of pos	toperative e	ctasia		89
1.	Identification	of at risk pation	ents		89
2.	Utilizing alter	native technol	logy		90
II. Treatn	nent of post	coperative e	ctasia		91
Α.	conservative	management			92
B.	Minimally inv	asive surgical	options incl	uding	93
1.	corneal ring	segment impl	antation		93
2.	Collagen cro	ss-linking(CXL)		95
3.	combination	n treatments			97
C.	Corneal trans	plantation (ke	ratoplasty).		 98
Summary					100
Referemnces					104

LIST OF ABBREVIATIONS

ABT Asymmetric Bowtie

BMP Bone morphogenic proteins

BSF Best Sphere Fit CH **Corneal Hysteresis**

CRF Corneal Resistance Factor

CT**Preoperative Corneal Thickness**

CXL Collagen cross-linking **DALK** deep anterior lamellar

D Diopters

DSPG dermatan-sulfate proteoglycan

ECM Extracellular matrix **EGF Epidermal growth factor FFKC** Forme Fruste Keratoconus

IL-1 Interleukin

IOP Intraocular pressures IS Inferior steepening

KSPG keratan-sulfate proteoglycan LASIK Laser in situ keratomileusis **MMPs** Matrix metalloproteinase's

Micrometer μm

MRSE Spherical equivalent manifest **OCT** Optical coherence tomography

OLCR Optical Low Coherence ORA Ocular Response Analyzer **PDGF** Platelet derived growth factor

PKP penetrating keratoplasty

PMD Pellucid marginal degeneration **PRK** Photorefractive Keratectomy **RST** Residual stromal thickness

TNF Tumor necrosis factor **SBT** Symmetric Bowtie **SRA Skewed Radial Axis**

US Ultrasound

VHF Very high frequency

LIST OF FIGURES

Chapter 1- Biomechanical and biological responses to LASIK.

	1. Major biomechanical loading forces in the cornea and a model of biomechanical central flattening associated with disruption of central lamellar segments8
	2. Summarizes corneal wound healing events11
Chap	ter 2- Investigating corneal status.
	3. The placido disc with regular concentric rings15
	4. Orbscan II image (Bausch & Lomb Surgical, San Dimas, Calif.) of the left eye. The anterior and posterior float values (upper right and left images, respectively)17
	5. Pentacam image (Oculus, Lynwood, Calif.) Note the front and back elevation maps (upper right and left images, respectively)
	6. A diagrammatic representation of various videokeratography patterns in the normal population in the absolute scale
	7. corneal topography shows FFKC25
	8. corneal topography shows PMD25
	9. Ocular response analyzer process(ORA)33

Chapter 3- Reported cases.

10 (Amoils 2000) Case 1: Pre-LASIK topography in the right and left eyes: bilateral inferior steepening39
11 (Amoils 2000) Case 4: Pre-LASIK topography in the left eye with symmetrical bow tie pattern46
12 (Amoils 2000) Case 7: Pre-LASIK topography in the right and left eyes with right bent bow and left asymmetrical bow tie
13.(Piccoli 2003) Preoperative corneal topography showing oblique astigmatism in a slight asymmetric bow-tie pattern51
14 (Lafond 2001) Corneal topography prior to surgery. The left eye is suspect for forme fruste keratoconus.59
15. (Randleman 2008) Case 6: Demonstrates a pattern of superior flattening with inferior steepening in the far periphery typically found in pellucid marginal corneal degeneration (PMD) in both eyes
16 (Randleman 2003) case1: Preoperative topography showing FFKC (OU)67
17 (Randleman 2008) patient 5. Topography of the right eye (OD) demonstrates an inferior steepening pattern
18. (Randleman 2008) case 2 OU: Topography (OD) demonstrates a FFKC pattern with inferior paracentral steepening. Topography (OS) demonstrates a FFKC pattern with paracentral steepening displaced temporally
19: (Wang 2003) Unoperated eye OD: shows more apparent irregular astigmatism. Operated eye OS: Postoperative keratectasia 20 months after LASIK in the left eye

Chapter 4- Management of postoperative ectasia.

20.	Algorithm to prevent ectasia90
	3
21.	Slitlamp photograph of patient with post–laser in situ keratomileusis ectasia after Intacs (Addition Technology Inc, Fremont, Calif)95
22.	Riboflavin/ultraviolet A treatment in a patient with a
	double ultraviolet A-diode97
23.	The cornea 12 months after DALK showing folds in the intrapupillary part of DM99

LIST OF TABLES

Chapter 3. Reported cases.

1.	Cases of postoperative ectasia with abnormal topography36
2.	Cases with RSB less than 300µm41
3.	Cases with Abnormal topography and RSB less than 300μm55
4.	Cases with Abnormal topography , RSB less than 300μm and corneal thickness less than 500 μm64
5.	Cases of post-LASIK ectasia with normal topography, RSB more than 300µm and corneal thickness more than 500µm
6.	Tabara and Kotb preoperative grading system for the detection of patients who are at risk of corneal ectasia after lasik in the correction of myopia84
7.	Randleman ectasia risk score system86
8.	Ectasia Risk score system categories86

KERATECTASIA AFTER LASRE IN SITU KERATOMELUISIS (LASIK)

Post-LASIK Ectasia can be defined as: Progressive non inflammatory corneal thinning after surgery resulting in irregular topographic steepening and resultant irregular astigmatism.¹

And defined as inferior topographic steepening of 5 diopters (D) or greater compared with immediate postoperative appearance.

Associated with a loss of 2 or more Snellen lines of uncorrected visual acuity.

And a change in manifest refraction of 2 D or more in either sphere or cylinder.²

The incidence of ectasia after refractive surgery is not known precisely, but have been estimated to be 0.2% to 0.66% in two studies.^{3,4}

١

CHAPTER 1 Chapter 1

BIOMECHANICAL AND BIOLOGICAL RESPONSES TO LASIK

I. Biomechanical Response:

It is evident from incisional refractive surgery that the cornea is not mechanically inert. The role of biomechanics is therefore important to consider in routine procedures and in special cases where the biomechanical status of the cornea is abnormal (for example, after any previous refractive surgery or after penetrating keratoplasty). Biomechanical changes can manifest clinically as immediate corneal shape changes, shape instability over time and increased sensitivity to shape changes from stimuli such as altered hydration, hypoxia and subsequent injury or surgery. (5-7).

Foundations of the biomechanical response:

1.Corneal architecture:

Bowman's layer and the stroma contain collagen fibrils, so these layers thus provide the majority of the cornea's tensile strength.⁸