Evaluation of Antimicrobial Effect of Different Medicinal Herbs against Single Species of Enterococcus Faecalis and Candida Albicans (An in-vitro study)

A thesis submitted to the Faculty of Oral & Dental Medicine
Cairo University in Partial fulfillment of the Requirements for
the Master Degree in Endodontics

 $\mathbf{B}\mathbf{y}$

Laila Hussein El-Mansy

B.D.S (2004)

Faculty of Oral and Dental Medicine

Cairo University 2010

Supervisors

Dr.Mohamed M. Abd El-Azim

Prof.of Endodontics

Department of Endodontics

Faculty of Oral and Dental Medicine

Cairo University

Dr. Ghada El-Hilaly Mohamed Eid

Assistant Prof. of Endodontics

Department of Endodontics

Faculty of Oral and Dental Medicine

Cairo University

Dr. Nadia Mohamed Hassan Madany

Lecturer of Microbiology

Department of Medical Microbiology and Immunology

Faculty of Medicine

Cairo University

Acknowledgment

First of all I Thank Allah, the most merciful and the most gracious who helped me and gave me patience to complete this work.

I would like to express my deepest appreciation to **Dr**.

Mohamed Abd El-Azim, whom I was really honoured to work under his supervision for his support, assistance, guidance and for giving me the opportunity to work in this very interesting field.

I would like to thank **Dr. Ghada el Hilaly**, who has the attitude and the substance of a genius, the spirit of adventure in regard to research, the excitement in regard to teaching and the devotion in regard to offering assistance.

Also I would like to thank **Dr. Nadia Madany**, for her valuable help and support throughout the microbiological part of this study.

I also wish to thank **Dr. El-Mewafy El-Ghadban**, the Prof. of Medicinal & Aromatic Plants, Agricultural Research Center and National Gene Bank & Genetic Resources, for his generous help in collecting the plant material and during the essential oils distillation part in this study.

Last but not least, thanks are extended to **Dr.Fathy**Soliman, Prof. Emeritus Pharmacology department, faculty of pharmacy, Cairo uneversity, for his support, valuable recommendations, suggestions and for his inspiring passion about the medicinal herbs potentials.

Dedication

I DEDICATE THIS WORK TO

The soul of my beloved father

My mother

for her love, care I unlimited support throughout all my

life stages

My sisters for their help $\mathcal L$ tender love

My family

My cherished supervisors

And to my lovely friends

List of contents

Title		page
1	Introduction	1
2	Review of Literature	3
	I-Botanical data, Therapeutic uses and Historical Background	3
	II- Invitro study on antimicrobial agent	12
3	Aim of the study	44
4	Materials and Methods	45
	• Essential oils used	45
	• Essential oils distillation	48
	Microbial strains used and culturing	50
	Antimicrobial testing	50
	I- Agar Well-Diffusion method	50
	Statistical Analysis	52
	II- Direct contact test	55
	• Essential oils tested	55
	• Teeth selection	55
	• Teeth preparation	55
	• Root specimens grouping	56
	Specimen inoculation	59
	Statistical Analysis	60

5	Result	S	63
	I-	Agar Well-Diffusion test	63
	II-	Direct Contact test	68
		A. Comparison between the effect of the three essential oils	
		against each microorganism per incubation period	68
		B. Comparison between the two incubation periods (24hrs	
		vs. 72 hrs) per oil per microorganism	73
6	Discus	sion	77
7	Summ	ary and Conclusions	90
8	Recon	nmendations	92
9	Refere	ences	94
10	Arabio	c summary	

List of Tables

Γable		page	
1	List of tested essential oils	45	
2	Mean of growth inhibition zone diameters in (mm) as detected by the agar well-diffusion test	65	
3	Statistical comparison of the effect of the three tested essential oils (Tea tree, Cinnamon, Peppermint) against C.albicans and E.faecalis per each incubation period (24hrs and 72hrs).	71	
4	Statistical comparison between the effect of the two incubation periods and % CFU reduction per each of the three tested oils on C.albicans and E.facaslis	75	
	E.faecalis.	75	

List of Figures

Figure		page
1	Raw plant material used for extraction of essential oils.	46
2	Steam distillation device used for extraction of essential oils from the plant material	49
3	Bottles used for storage of essential oils	49
4	Muller Hinton blood agar Petri dish with 5 wells which was used in the Agar Well-diffusion test	53
5	Muller Hinton agar plates prepared for antimicrobial testing of Tea tree oil and marked on the bottom by permanent marker for identification	53
6	Instruments and materials used in the Agar Well-diffusion method.	54
7	Flow Chart of experimental root specimens' grouping in the direct contact test	58
8	Mounted root specimens in plastic eppendorfs arranged in an eppendorf holder	61
9	A Laminar flow cabinet	61

10	Inoculated root specimens arranged in two eppendorf holders according to the incubation period, placed in the incubator at 37°C after being treated with essential oils	62
11	90 Muller Hinton blood agar plates in the incubator after plating serial dilutions of root canal specimens' samples.	62
12	Ranking of the antimicrobial effects of the tested 15 essentials oils on <i>C.albicans</i> (A) and <i>E. faecalis</i> (B), as detected by Agar well-diffusion method	66
13	A sample of Muller Hinton Agar plates demonstrating growth inhibition zones	67
14	Bar chart Comparing the effect of the three essential oils (Tea tree, Cinnamon, Peppermint) on <i>C. albicans</i> (A) and <i>E. faecalis</i> (B), per incubation period (24 hrs and 72 hrs)	72
15	Bar chart Comparing the effect of the two incubation periods per each of the 3 tested oils (Tea tree, Cinnamon and Peppermint) and controls on C.albicans (A) and E. faecalis (B)	76

Introduction

Introduction

Success of Endodontic therapy is multifactorial. Many factors contribute to achieve an adequate root canal therapy, starting from appropriate access preparation, followed by proper cleaning and shaping till reaching the 3D obturation of the canals.

The eradication of root canal infection is of paramount importance in endodontic treatment, since residual infection is one of the chief factors leading to post treatment failure.

Enterococcus faecalis and Candida albicans are the most frequently associated microorganisms in persistent endodontic infections. This finding can be explained by their various survival and virulence factors; including their ability to compete with other microorganisms, invade dentinal tubules and resist nutritional deprivation.

Thus, thorough debridement of the canals to remove all pulpal tissues and microbes contributes to a great extent for the success of root canal therapy.

However, in clinical practice this is not always fully achieved due; to the anatomical complexities of many root canals and consequent limitations of access by instruments, irrigants and intracanal medications. Moreover, the efficacy of these measures may also depend on the vulnerability of the involved species.

In many parts of the world there is a rich tradition in the use of medicinal herbs for the treatment of many infectious diseases. The antimicrobial properties of essential oils have been known for many years and have been used against a wide variety of bacteria and fungi including oral pathogens.

Recently the use of medicinal herbs derived essential oils is a growing market and there is a considerable range of applications. The oils are used, for example, in the food beverages industry and as fragrances in perfumes and cosmetics. Also they are incorporated in some oral health products.

The changing face of dental care, continued research on microorganisms and their elimination from the dental apparatus may well define the future of endodontic specialty. With the increase in the prevalence of microbial resistance and possible side effects to conventional antiseptics, attention is now turning to the use of natural antimicrobial compounds isolated from plant species used in herbal medicine.

Further researches to discover and determine the antimicrobial activity of Medicinal herbs' extracts is worthwhile.

Review of Literature