Seroprevalence of Anti-Helicobacter pylori Antibodies in Hepatitis C Patients

M.Sc.Thesis
In
Medical Microbiology and Immunology.

Presented by

Sherien Falaky Belasy Kotb

Supervised by

Dr. Sohair Elattar Ahmed Anwar Elattar

Professor of Microbiology and Immunology Faculty of Medicine - Cairo University

Dr. Nadia Mohamed Hassan Madany

Lecturer of Microbiology and Immunology
Faculty of Medicine - Cairo University

Dr. Hanaa Hanna Morcos

Consultant of Microbiology and Immunology
National Hepatology and Tropical Medicine Research Institute

Faculty of Medicine Cairo University 2011

بسم الله الرحمن الرحيم

صدق الله العظيم سورة طه- آية (١١٤)

Acknowledgment

First of all, my thankfulness is to **ALLAH**, who gave me the power to perform this work.

It is a pleasure to express my sincere gratitude and thankfulness to **Prof.**

Dr. Sohair Elattar Ahmed Anwar Elattar, Professor of Microbiology and Immunology, Faculty of Medicine, Cairo University, who faithfully helped me in finishing this thesis. I will never forget her kind supervision and endless help through the whole study.

No word can express my everlasting obligation to **Dr. Nadia Mohamed Hassan Madany,** Lecturer of Microbiology and Immunology, Cairo University, for her sincere help and precious advice. I will never forget her beneficial instructions on the final touches of this thesis.

I owe too much to **Dr. Hanaa Hanna Morcos**, Consultant of Microbiology and Immunology, National Hepatology and Tropical Medicine Research Institute, for her endless guidance she gave me through this work. She spent many of her private time helping me and her constructive criticism will never be forgotten.

Finally, I will never forget to thank all my patients, to whom this study was carried out, without their cooperation this thesis was never going to appear.

Abstract

In this study, we were aiming to find a relation between H.pylori and

progression of HCV related liver disease by comparing the sero-

prevalence of *H.pylori* in HCV sero-negative and sero-positive (cirrhotic

& non-cirrhotic) patients. H.pylori status was investigated using ELIZA

technique in 30HCV positive cirrhotic patients, 30HCV positive non-

cirrhotic patients and 20healthy controls. The study showed higher

prevalence of both *H.pylori* IgG & IgA in cirrhotics (100%,80%)

respectively, than non-cirrhotics (90%,46.7%) and controls (65%,20%).

No relation was found between *H.pylori* infection and sex or age.

Key words: HCV, *H.pylori*, IgG, IgM.

CONTENT

	No.
LIST OF ABBREVIATIONS	I
LIST OF TABLES	IV
LIST OF FIGURES	VI
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF THE LITERATURE	4
Chapter 1 : Hepatitis C Virus	4
Chapter 2 : Helicobacter Pylori	40
Chapter 3: Relation between HCV and H.pylori	63
SUBJECTS AND METHODS	79
RESULTS	87
DISCUSSION	100
SUMMARY	106
CONCLUSION	107
REFERENCES	108
ARARIC SIIMMARV	

LIST OF ABBREVIATIONS

ALT Alanine aminotransferase

AST Aspartate aminotransferase

C protein Core protein

Cag A Cytotoxin-Associated gene A

CDT Cytolethal distending toxin

CIA Chemiluminescence immunoassay

DNA Deoxyribonucleic acid

E proteins Envelope glycoproteins

EIA Enzyme immunoassays

ELISA Enzyme linked immune-sorbent assay

ER Endoplasmic reticulum

ETR End-of-treatment response

EVR Early virological response

FDA Food and Drug Administration

GBV-B GB virus B

GBV-C GB virus C

GERD Gastro-esophageal reflux disease

GIT Gastrointestinal tract

GSA Gel shift assay

H.pylori Helicobacter pylori

HDA Heteroduplex analysis

HAV Hepatitis A virus

HBV Hepatitis B virus

HCC Hepatocellular Carcinoma

HCV Hepatitis C virus

HE Hepatic encephalopathy

HIV Human immune deficiency virus

HLA Human leukocyte antigen

HRP Horseradish peroxidase

HVR1 First hypervariable region

ICAM-1 Intercellular adhesion molecule 1

IFN Interferon

Ig Immunoglobulin

IL Interleukin

IRES Internal ribosome entry site

KD Kilo dalton

LD Lipid droplets

LDL Low-density lipoprotein

LPS Lipopolysaccharides

MALT Mucosa-associated lymphoid tissue

MHC Major histocompatibility complex

NCR Non-coding regions

NIH National Institute of Health

NK Natural killer

NS Non – structural

NTR Non-translated regions

ORF Open reading frame

PCR Polymerase chain reaction

PEG Polyethylene glycol

PEG-IFN Pegylated Interferon

PPI Proton pump inhibitor

RIBA Recombinant immunoblot assay

RNA Ribonucleic acid

RVR Rapid virological response

SabA Sialic acid-binding adhesin

SL Stem loop

spp. Species

SSCP Single-strand conformational polymorphism

SVR Sustained virological response

Tc Cytotoxic T cells

Th Helper T cell

TMA Transcription-mediated amplification

TMB Tetra-methyl benzidine

TNF- α Tumour necrosis factor α

UTR Untranslated regions

Vac A Vacuolating Toxin A

LIST OF TABLES

No.	Title	Page
1	Interpretation of HCV assays	27
2	Virological responses during therapy and definitions	30
3	Characteristics of persons for whom therapy is widely accepted	37
4	Characteristics of persons for whom therapy is currently	
	contraindicated	37
5	Comparison between <i>H.pylori</i> IgG positivity and negativity in the	
	three studied groups	88
6	Comparison between <i>H.pylori</i> IgA positivity and negativity in the)
	three studied groups	88
7	Comparison between control, non-cirrhotic and cirrhotic	
	groups as regards serological test (IgG) for H.pylori	89
8	Comparison between control, non-cirrhotic and cirrhotic groups	
	as regards serological test (IgA) for H.pylori	89
9	Comparison between the three studied groups as regards age	90
10	Comparison between the three studied groups as regards sex	90
11	Comparison between <i>H.pylori</i> IgG positivity and negativity as	
	regards age in control group	91
12	Comparison between <i>H.pylori</i> IgA positivity and negativity as	
	regards age in control group	91
13	Comparison between <i>H.pylori</i> IgG positivity and negativity as	
	regards age in non-cirrhotic group	92
14	Comparison between <i>H.pylori</i> IgA positivity and negativity as	
	regards age in non-cirrhotic group	92

No.	Title	Page
15	Comparison between <i>H.pylori</i> IgG positivity and negativity as	
	regards age in cirrhotic group	93
16	Comparison between <i>H.pylori</i> IgA positivity and negativity as	
	regards age in cirrhotic group	93
17	Comparison between <i>H.pylori</i> IgG positivity and negativity as	
	regards sex in control group	94
18	Comparison between <i>H.pylori</i> IgA positivity and negativity as	
	regards sex in control group	95
19	Comparison between <i>H.pylori</i> IgG positivity and negativity as	
	regards sex in non-cirrhotic group	96
20	Comparison between <i>H.pylori</i> IgA positivity and negativity as	
	regards sex in non-cirrhotic group	97
21	Comparison between <i>H.pylori</i> IgG positivity and negativity as	
	regards sex in cirrhotic group	98
22	Comparison between <i>H.pylori</i> IgA positivity and negativity as	
	regards sex in cirrhotic group	99

LIST OF FIGURES

No.	Title	Page
1	Model structure and genome organization of HCV	5
2	HCV genome organization and polyprotein processing	13
3	Potential outcomes of HCV infection	14
4	Graphic display of virological responses	31
5	Morphology of <i>H.pylori</i>	41
6	Association of <i>H.pylori</i> colonization and disease states	50
7	Peptic ulcer is a mucosal defect which penetrates the	
	muscularis mucosae and muscularis propria	53
8	H.pylori colonized on the surface of regenerative epithelium	57
9	Gastric mucosa with <i>H.pylori</i> at the lumen of the gland shown	
	with Giemsa stain	58
10	Two proposed pathways for Helicobacter spp. colonization of	
	the liver	66

Introduction & Aim of the Work

INTRODUCTION

Hepatitis C is a non-cytopathic hepatotrophic virus having a single stranded, positive sense linear 9.5 kb RNA genome. Hepatitis C virus (HCV) was first discovered in 1989 by *Michael Houghton* and colleagues at Chiron. It was rapidly recognized that the new virus was responsible for the majority of cases of non-A, non-B hepatitis. HCV infection is the leading cause of acute, chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. There are more than 170 million chronic carriers worldwide who are at risk of developing liver cirrhosis and/or hepatocellular carcinoma (*Kim*, 2002; *Watanabe et al.*, 2005).

Cirrhosis is a late stage of progressive hepatic fibrosis. It is considered to be irreversible in its advanced stages and the only option may be liver transplantation. Patients with cirrhosis are susceptible to various complications which increase the morbidity and mortality and reduce their life expectancy (*Dore et al.*, 2004).

Knowing risk factors that lead to progression of hepatitis to cirrhosis is important to prevent its occurrence. HBV and HIV co-infection are of these factors, also acquiring the infection at a young or old age (>40 years), excess alcohol consumption, male gender and schistosomiasis (*Al-Mahtab*, 2010).

However, even in the absence of these factors, disease progression is still occurring in some patients, suggesting the role of other factors. Patients with liver cirrhosis are frequently subjected to a number of disorders of the gastric mucosa and peptic lesions in the gastro duodenal mucosa, and considering that *Helicobacter pylori* (*H.pylori*) infection is an important factor in the pathogenesis of peptic ulcer, it is reasonable to postulate *H.pylori* as a putative risk factor in HCV progression (*Queiroz et al.*, 2006).

In addition, detection of *H. pylori* DNA in the liver tissue of patients with chronic hepatitis C and hepatocellular carcinoma (HCC) has been reported (*Ponzetto et al., 2000*) and *H. pylori* strain was isolated from the liver of a patient with cirrhosis (*Queiroz et al., 2001*).

H.pylori, a non-invasive Gram negative bacterial pathogen of the human stomach, infects about 50% of the population worldwide. The incidence rises steadily with age. Infection by *H.pylori* causes gastritis initially and, if allowed to persist, can induce a range of pathologies. It is the causative agent of most peptic ulcers, and other serious outcomes such as atrophic gastritis, intestinal metaplasia, and gastric cancer are correlated with long-term infections (*Baldwin et al.*, 2007).

Detection and eradication of gastric *H.pylori* is easy and relatively inexpensive; hence the interest in exploring its involvement in diseases arising outside the stomach including liver diseases. Many studies have discussed the relation between *H.pylori* and liver diseases including HCV-related hepatic diseases and their results were controversial.

AIM OF THE WORK

This work was done to analyze serum antibody levels to *Helicobacter pylori* in patients with chronic hepatitis C virus divided into cirrhotic and non-cirrhotic and compare results with corresponding parameters for a healthy control group, to explore a possible association of *Helicobacter pylori* with HCV-related liver disease, and relate results to age and sex.