Studies on the Speciation of Certain Trace Elements in Aquatic Environment

Presented by

Hazem Hassan Mahmoud Mansour

A Thesis Submitted

to Faculty of Science

For
The Degree of
Ph.D. of Science

(Inorganic Chemistry)

Chemistry Department Faculty of Science Cairo University

(2010)

دراسات علي تصنيف بعض العناصر الشحيحة في البيئة المائية

إعداد

حازم حسن محمود منصور

رسالة مقدمة إلى

كلية العلوم

بخصوص الحصول علي درجة دكتوراه الفلسفة في العلوم

(الكيمياء غير العضوية)

قسم الكيمياء كلية العلوم جامعة القاهرة

(2010)

Acknowledgment

First and for most thanks to Gad. The most merciful and greatest beneficent.

This work for the soul of **Prof**. **Dr**. **Nagwa F**. **Zahran** Vice Chairman of Atomic Energy Authority and Supervisor of Central Lab. of Elemental and Isotopic Analysis.

I owe special gratitude to

Prof. Dr. M. Waheed A. Badawy

Professor of Physical Chemistry, Faculty of Science, Cairo University, for his precious supervision, cooperation, assistance and final reviewing of the whole thesis.

I wish to express my deep appreciation to

Prof. Dr. Abdel Fattah I. Helal

The Former Vice Chairman of Atomic Energy Authority for his support and encouragement.

I would like to express my gratitude and appreciation to **Prof**. **Dr**. **H**. **F**. **Aly**

Professor of Chemistry, Hot Lab. Center, Atomic Energy Authority, for valuable guidance and illuminating discussions.

I would like to thank my colleagues in the central laboratory of elemental and isotopic analysis for their real help during my experimental work.

ABSTRACT

Two analytical techniques namely, atomic absorption and ion chromatography are used for the total content analyses of heavy elements in water and sediments from Ismaelia canal. The water samples are collected from a depth of 1.5 meter from the surface water and adjusting the pH of the samples by nitric acid to prevent the adsorption of the elements on the walls of the sample container. The elements under investigation are copper, lead, iron, nickel, cobalt, cadmium and manganese. For the analysis, using ion chromatographic technique, two different eluents: Pyridine Dicaroboxylic Acid (PDCA) and oxalic acid are used. An agreement in the detected concentrations of the elements is always obtained either on using ion chromatography technique or atomic absorption spectrometry measurements. Element speciation in natural water is important for its toxicity, bioavailability, environmental mobility and biogeochemical behavior.

In general the potential risk depends on the chemical species of the element. Ionic species of [Cr (III)] and the toxic [Cr (VI)] were separated by anion exchange ion chromatography with dionex Ion Pac. CS5A analytical column using Pyridine 2,6-Dicaroxylic acid eluent and post column reagent 1,5-Diphenylcarbazide. The pH of water samples and eluent is selected to be 6.8 to allow optimum separation and detection of both species. Total chromium in water samples is analyzed by flame atomic absorption spectrometer (FAAS). In the present work effect of pH and ionic strength of water samples on the chromatographic separation of [Cr (VI)] is studied.

Hydride generation atomic absorption spectrometry (HGAAS) is highly sensitive and accurate procedure for determination of [As (III)] and [As (V)] in environmental samples. The effect of the concentration of reducing agent sodium borohydride (NaBH₄), the effect of flow rate of sodium borohydride, the effect of the concentration of hydrochloric acid (HCl), the effect of the flow rate of argon

gas and the effect of the sample volume on the intensity of the signal of arsenic are studied.

Iron speciation studies of water were analyzed by ion chromatograph and atomic absorption. Iron species [Fe (II)] and [Fe (III)] were separated and detected by anion exchange ion chromatograph, whereas total iron concentration is measured by atomic absorption spectrometry.

CONTENTS

	Title	Pages
Chapter (1)	INTRODUCTION AND AIM OF THE WORK	
1.1.	Speciation	3
1.2.	Heavy elements	6
1.2.1.	Beneficial heavy elements	7
1.2.2.	Toxic heavy elements	7
1.3.	Chromium and its compounds	8
1.3.1.	Biological role of chromium	10
1.3.2.	Isotopes of chromium	10
1.3.3.	Toxic chromium species	11
1.4.	Arsenic	12
1.5.	Iron and its compounds	13
1.5.1.	Biological role of iron	14
1.5.2.	Iron poisoning	15
1.6.	Aim of the work	15
CHAPTER (2)	THEORETICAL CONSIDERATIONS	
2.1.	Microwave sample preparation	17
2.1.1.	How microwaves work	17
2.1.2.	Microwave ovens and vessels	19
2.1.3.	Sample preparation	21
2.1.4.	Limitations	22
2.2.	Ion chromatography as a separation tool	22
2.2.1.	Principles of the separation	23
2.2.2.	Types of stationary phases	25
2.2.3.	Ion capacity	28
2.2.4.	Swelling	29
2.2.5.	Selectivity	29

2.2.6.	Properties of mobile phases	31
2.2.7.	Ion-suppression in ion-chromatography	35
2.2.8.	Mobile phases for non-suppressed ion-exchange chromatography	36
2.2.9.	Mobile phases for suppressed ion chromatography	39
2.2.10.	Detection in ion chromatography	39
2.3.	Interference in atomic absorption spectroscopy	42
2.3.1.	Spectral interference	43
2.3.2.	Background correction methods	43
2.3.3.	Chemical interferences	47
2.3.4.	Sample preparation for atomic absorption	50
2.3.5.	Calibration curves	51
2.3.6.	Detection limits	51
2.3.7.	Accuracy and Precision	52
2.4.	Hydride generation atomic absorption spectroscopy	52
Chapter (3)	APPARATUS AND EXPERIMENTAL CONDITIONS	
3.1.	Ion chromatography	54
3.1.1.	Pumps	55
3.1.2.	Gradient elution	57
3.1.3.	Degassing	58
3.1.4.	Injectors	59
3.1.5.	Standard ion chromatograph column.	60
3.1.6.	Pressure measurement	62
3.1.7.	Detector	62
3.2.	Atomic absorption instrumentation	64
3.2.1.	Light sources	65
3.2.2.	Optical considerations	68
3.2.3.		70
	The atomic absorption atomizer	70
3.2.4.	The atomic absorption atomizer Photomultiplier detector	70 74
3.2.4. 3.3.	•	

3.3.1.	The Hollow cathode lamp	74
3.3.2.	Hydride generation	74
3.3.3.	The optical cell and flame	75
3.3.4.	The monochromator and photomultiplier tube	76
3.3.5.	Acidic content and oxidation state of samples and standards	77
CHAPTER (4)	RESULTS AND DISCUSSION	
4.1.	Environmental samples	79
4.2.	Acid purification system	81
4.3.	Trace elements in environmental samples	82
4.3.1.	Measuring conditions for ion chromatograph	82
4.3.2.	Measuring conditions for atomic absorption	83
4.3.3.	Reagents	84
4.3.4.	Analysis of trace elements in environmental samples	84
4.4.	Trace element speciation	104
4.4.1.	Speciation of chromium	105
4.4.2.	Inorganic speciation of arsenic	114
4.4.3.	Iron Speciation in water samples	122
	References	
	English summary	
	Arabic summary	

List of Abbreviations

Symbol Meaning

IC Ion Chromatograph

HPIC High Pressure Ion Chromatograph

AAS Atomic Absorption Spectrometry

HG-AAS Hydride Generation Atomic Absorption Spectrometry

FAAS Flame Atomic Absorption Spectrometry

ICP-MS Inductively Coupled Plasma Mass Spectrometry

PCR Post column reaction

ppm part per million
ppb part per billion
ppt part per trillion

RSD Relative Standard Deviation

MAU Milli Absorbance Unit

UV Ultra violet

HCL Hollow Cathode Lamp
PMT Photo multiplier Tube

PAR 4-(2-Pyidylazo)-resorcinol mono sodium salt

PDCA Pyridine 2,6 dicarboxylic acid

ATSDR The Agency for Toxic Substances and Disease Registry

List of Figures

Figure	Title	Page
Fig. (2-1)	Schematic Microwave vessel	20
Fig. (2-2)	Ion Exchange process	24
Fig, (2-3)	Background Correction Methods	45
Fig. (2-4)	Background Correction Based on Zeeman Effect	47
Fig. (3-1)	Main components of ion chromatograph	55
Fig. (3-2)	Reciprocating Piston Pumps	56
Fig. (3-3)	Syringe-Type Pumps	56
Fig. (3-4)	high pressure mixing system	57
Fig. (3-5)	Low pressure mixing system	58
Fig. (3-6)	Injector	59
Fig. (3-7)	Standard column hardware	61
Fig. (3-8)	Main components of AAS	65
Fig. (3-9)	Hallow cathode lamp	66
Fig. (3-10)	Electrodeless discharge lamp	67
Fig. (3-11)	Single beam atomic absorption spectrometer	68
Fig. (3-12)	Double beam atomic absorption spectrometer	69
Fig. (3-13)	Optical geometry of monochromator	70
Fig. (3-14)	Atomic absorption burner system	71
Fig. (3-15)	atomic absorption nebulizer	73
Fig. (3-16)	Main components of HG-AAS	75
Fig. (3-17)	Optical cell and flame	76
Fig. (3-18)	Steps of analysis by HG-AAS	77
Fig. (4-1)	The calibration curves for different heavy elements	85
Fig. (4-2)	Chromatogram for the separation of heavy elements.	88
Fig. (4-3)	Iron concentration (mg/L) in water samples	91

Fig. (4-4)	Manganese concentration (mg/L) in water samples	91
Fig. (4-5)	Iron concentration (mg/L) in sediments samples	93
Fig. (4-6)	Manganese concentration (mg/L) in sediment samples	93
Fig. (4-7)	Copper concentration (mg/L) in water samples	95
Fig. (4-8)	Copper concentration (mg/L) in sediment samples	95
Fig. (4-9)	Lead concentration (mg/L) in water sample	97
Fig. (4-10)	Lead concentration (mg/L) in sediment samples	97
Fig. (4-11)	Cadmium concentration (mg/L) in sediment samples	98
Fig. (4-12)	Nickel concentration (mg/L) in water samples	99
Fig. (4-13)	Nickel concentration (mg/L) in sediment samples	100
Fig. (4-14)	Cobalt concentration (mg/L) in water samples	101
Fig. (4-15)	Cobalt concentration (mg/L) in sediment samples	102
Fig. (4-16)	Chromatographic separation of Cr (III) and Cr (VI)	109
Fig. (4-17)	Relative distribution of Cr (VI) species in water as a function of pH and Cr (VI) concentration.	110
Fig. (4-18)	Variation of absorbance at different pH	111
Fig. (4-19)	Variation of absorbance at different ionic strength	112
Fig. (4-20)	Calibration curve of Cr	113
Fig.(4-21)	Variation of absorbance at different concentrations of NaBH ₄	118
Fig. (4-22)	Variation of absorbance at different concentrations of HCl	119
Fig. (4-23)	Variation of absorbance at different flow rates of argon	120
Fig. (4-24)	Calibration Curve of As (III)	121
Fig. (4-25)	Calibration curve of Fe ²⁺ and Fe ³⁺ by IC	125
Fig. (4-26)	Calibration curve of total Fe by AAS	126
Fig. (4-27)	Chromatogram of Fe ²⁺ and Fe ³⁺ by IC	126
_		

List of Tables

Table	Title	Page
Table (2-1)	Types of functional groups commonly in ion chromatography.	25
Table(4-1)	Sediments and water samples.	81
Table (4-2)	Analytical conditions for analysis of heavy elements.	83
Table (4-2)	The operating parameters for the Atomic Absorption Spectrometer (AAS).	84
Table (4-4)	Detection limits (DL) of heavy elements by atomic absorption spectrometry.	86
Table (4-5)	Retention times (min.) of some elements using ion chromatography.	87
Table (4-6)	Trace and minor heavy element concentrations (mg/L) in sediments standard reference material	89
Table (4-7)	Iron concentration (mg/L) in water sample solutions	90
Table (4-8)	Manganese concentration (mg/L) in water samples	90
Table (4-9)	Iron concentrations (mg/L) in the sediment samples	92
Table (4-10)	Manganese concentration (mg/L) in sediment samples	92
Table (4-11)	Copper concentration (mg/L) in water sample solutions.	94
Table (4-12)	Copper concentration (mg/L) in the sediment sample	94
Table (4-13)	Lead concentration (mg/L) in water sample solutions	96
Table (4-14)	Lead concentration (mg/L) in the sediment samples	96
Table (4-15)	Cadmium concentrations (mg/L) in water sample and sediments.	98
Table (4-16)	Nickel concentration (mg/L) in water sample solutions	99
Table (4-17)	Nickel concentration (mg/L) in lake sediment samples	100
Table (4-18)	Cobalt concentration (mg/L) in water sample solutions	101
Table (4-19)	Cobalt concentration (mg/L) in sediment samples	102
Table (4-20)	Experimental parameters for analysis Cr (III) and Cr (VI) by anion exchange ion chromatography	108

Table (4-21)	Experimental Parameter of Atomic Absorption spectrometer	108
Table (4-22)	Concentration of Cr (VI) in ppb (μg/L) in water samples at pH 3,5,7,9 and 11	111
Table (4-23)	Concentration of Cr (VI) in ppb (µg/L) in water samples at different ionic strengths	112
Table (4-24)	Concentration of total Cr in µg/L (ppb) using AAS	114
Table (4-25)	Concentration Cr (III) and Cr (VI) in $\mu g/L$ (ppb) by IC	114
Table (4-26)	Instrumental and chemical conditions for the determination of arsenic by HG-AAS	116
Table (4-27)	Determination of total arsenic, As (III) and As (V) in ppt (ng/L) in certified reference material by HG-AAS	121
Table (4-28)	Determination of total arsenic, As (III) and As (V) in ppt (ng/L) in water samples by HG-AAS	122
Table (4-29)	Determination of total arsenic, As (III) and As (V) in ppm (mg/L) in sediment samples by HG-AAS	122
Table(4-30)	The experimental conditions for speciation of iron in water samples by IC	124
Table (4-31)	The experimental conditions for determination of total iron concentration in water samples by AAS	124
Table (4-32)	List of water samples	125
Table (4-33)	Total Fe and Fe ²⁺ and Fe ³⁺ concentration (mg/L) in water samples by AAS and IC	127

CHAPTER (1)

INTRODUCTION AND AIM OF THE WORK

1.1. Speciation

Speciation ^(1, 2) analysis is defined as the separation and quantification of different oxidation states or chemical forms of a particular element. The determination of total element concentrations is not sufficient for clinical and environmental considerations. Although the total concentration of an element is still useful and essential in many areas, the determination of each species is an important task. The concentration of a toxic species is more relevant in the setting of environmental studies than is the total elemental concentration. The collection, treatment and preservation of samples for quantitative analysis of species require careful consideration and planning. Speciation analysis⁽³⁻⁵⁾ is essential for predicting and modeling fate, risk, and effects while it is a must have for designing custom - tailored treatment strategies.

The speciation of an element can directly affect the efficiency of the treatment process. Speciation analysis is not as common as total elemental analysis because while speciation data is accepted by some regulators, there are no set laws or regulations on this matter. The lack of species-specific regulations is due to the absence of methods that can reliably measure the analytes of interest at the regulatory levels. For instance, the analytical methods currently available for elements such as arsenic and chromium are either not selective enough or do not provide sufficiently low detection limits. Another important issue for speciation analysis is its cost. Even though it has been shown time after time that speciation analysis can save time and money with respect to remediation and risk assessment. However, it is usually more expensive than

routine elemental analyses. One of the most important aspects of speciation analysis is the issue of preservation. This is still not possible for most analytes of interest so even the most sophisticated analytical methods for the determination of an element's speciation are "useless" if it cannot be assured that the species distribution in the sample remains unchanged between sample collection and analysis. Therefore, choosing the right preservation techniques for the right matrix is obligatory to ensure that the speciation information in the sample remains intact during shipping and storage until the analysis is performed. Analytical speciation procedures are affected by the sampling and analytical methods depending on the target species and the sample environment.

Application of speciation analysis

- Environmental risk analysis with its main tasks hazard identification, dose-response assessment, and exposure assessment heavily depend on detailed speciation data, since the main characteristics of hazardous components, such asecotoxicity, mobility and bioavailability are species dependent.
- Waste management is an area, where speciation will provide the information to facilitate remediation and to reduce costs for clean-up procedures.
- Occupational health and hygiene will benefit from speciation analysis
 by identification of the toxic species of exposure, differentiation of the
 different routes of exposure, biological monitoring of trace element
 species by measuring biomarkers, and studying the kinetics of trace
 element species in the body following occupational exposure.
- Toxicology, pharmacy, medicine, clinical chemistry and biology all benefit from speciation data, since biological activity, toxicity and