Role Of Ultrasound Biomicroscopy In Imaging Anterior Segment Of The Eye

Essay Submitted For Partial Fulfillment Of Master Degree In Ophthalmology By

Naglaa Mostafa Mohamed Mostafa M.B.B.cH

Under Supervision Of

Prof. Dr. Amr Saleh Galal

Professor Of Ophthalmology Faculty Of Medicine Ain Shams University

Dr. Mohamed Gamil Metwally

Assistant Professor Of Ophthalmology Faculty Of Medicine Ain Shams University

Faculty Of Medicine
Ain Shams University
Cairo-Egypt-Y・۱Y

Dedication

To my sweet family;

My lovely husband and lovely son

My dear father

My great mother

My lovely sisters

My father in law

My mother in law

My sister in law

My brothers in law

This work would have never come true without your support & encouragement

Acknowledgment

First, thanks are to ALLAH the most merciful for blessing this work until it has reached its end.

I would like to express my deepest gratitude, thanks and appreciation to **Prof. Dr. Amr Saleh Galal**, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his enthusiastic support, continuous encouragement, valuable generous advice, and great help throughout this work.

I would also like to express my sincere gratitude to **Dr. Mohamed Gamil Metwally**, Assistant professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his kind supervision, support, indispensable suggestion, and guidance in preparing this essay.

Contents

	Page
Chapter : Introduction and aim of work	١
Chapter : History of ultrasound	٦
Chapter : Basic physics	11
Chapter : Instrumentation and Technique	77
Chapter : Anterior segment with UBM	٣٦
Normal anterior segment	٣٧
Cornea	٤٢
Intraocular lens	00
Glaucoma	٦١
Ciliary body and iris	٧١
Trauma	۸.
Summary	۸٧
References	97
Arabic Summary	

List Of Abbreviations

η-	
μm	Micrometer
AC	Anterior chamber
ACG	Angle closure glaucoma
AC-IOL	Anterior chamber intraocular lens
AOD	Angle opening distance
ARA	Angle recession area
AS-OCT	Anterior segment optical coherence
	topography
BM	Bowman's membrane
СВ	Ciliary body
CBS	Capsular block syndrome
CCC	Continues curvilinear capsulorhexis
CT	Corneal thickness
CCT	Central corneal thickness
CPU	Central processing unit
dB	Decibel
DM	Descemet's membrane
FDA	Food and drug administration
Hz	Hertz
ICE	Iridocorneal endothelial syndrome
IOFB	Intraocular foreign body
IOL	Intraocular lens

KI	Keratoconus index
MHz	Megahertz
Mm	Millimeter
MRI	Magnetic resonance imaging
Nd YAG	Neodymium Yttrium-Aluminum- Garnet
PACG	Primary angle closure glaucoma
PAS	Peripheral anterior synechia
PC	Posterior chamber
PC-IOL	Posterior chamber intraocular lens
PCT	Peripheral corneal thickness
PTK	Phototherapeutic keratectomy
PKP	Penetrating keratoplasty
PVDF	Polyvinylidene difluoride
PVDF-TrFE	polyvinylidene fluoride trifluoro- ethylene
PZT	Lead zirconate titanate
OAG	Open angle glaucoma
OCT	Optical coherence tomography
TCPD	Trabecular ciliary process distance
TIA	Trabecular-iris angle
TMW	Trabecular meshwork
UBM	Ultrasound biomicroscopy

List Of Figures

Figure	Title	Page
Properties of sound	waves	١٢
Acoustic spectrum		١٣
Low frequency vs.	high frequency ultrasound.	١٤
Comparing penetral	tion and resolution	10
UBM imaging frequency	uency range	١٦
Ultrasound transduc	cer working mechanism	۲.
Interaction of ultras	ound waves with tissues	۲١
Angle of incidence	of sound waves	۲ ٤
A-scan in normal ex	yes	40
B-scan in normal ey	/es	77
UBM machine		47
• MHz transducer		۲٩
Eye cups used in U	BM	٣.
Eye cups fitted bety	veen eye lids	٣.
UBM examination	in supine position	٣١
Clearscan cover ins	erted into the probe	٣٤
UBM examination	using ClearScan cover	٣٤
UBM image, open	shell Vs ClearScan	80
UBM of normal and	erior segment	37

Figur	e Title	Page
	Histological section on anterior segment	٣٨
	UBM of normal cornea	٣٨
	UBM of normal AC depth	٤.
	CB angle, pars plicata and pars plana	٤١
	Axial view of ciliary processes	٤١
	Lens zonule	٤٢
	Corneal oedema	٤٢
	Opaque cornea and synechiae in AC	٤٢
	Acute corneal hydrops	٤٥
	Slit-lamp image of Peters' anomaly	٤٧
	Iridocorneal adhesion in Peters' anomaly	٤٧
	UBM features of Peters' anomaly	٤٧
	Slit-lamp image of granular corneal dystrophy	٤٩
	UBM image of granular corneal dystrophy	٤٩
	Slit-lamp image of posterior stromal opacity	٤٩
	UBM image of posterior stromal opacity	٤٩
	Reis-Bucklers corneal dystrophy	٥.
	UBM of Reis-Bucklers dystrophy	٥.
	Lattice corneal dystrophy	01
	UBM of Lattice corneal dystrophy	01
	Iridocorneal endothelial syndrome (ICE)	07

Figure	Title	Page
Ţ	JBM features of ICE syndrome	٥٢
	Limbal dermoid	٥٣
	JBM of limbal dermoid	0 {
Ι	ntracorneal epithelial cyst	0 £
I	OL haptic in bag	00
	OL haptic in sulcus	00
I	Buried AC-IOL haptic	٥٦
J	JBM of Displaced IOL	٥٧
F	Retained nuclear fragment in PC	٥٨
(Capsular block syndrome (CBS)	٥٩
Ţ	UBM of CBS 7 weeks after cataract surgery	٦.
(CBS \ week after YAG laser anterior	
(capsulotomy	٦.
A	Angle parameters measured with UBM	٦٣
F	Pupillary block glaucoma	٦٤
F	Plateau iris syndrome	70
I	ndentation UBM in plateau iris syndrome	٦٦
I	ris pigment epithelial cyst	٦٦
F	Pigment dispersion syndrome	77
Ţ	UBM of pigment dispersion syndrome	77
F	Filtering bleb after glaucoma surgery	٦٨
F	Filtering bleb types	٧.

Figur	e Title	Page
	UBM features of uveitis	٧٢
	Ciliochoroidal effusion in uveitis	٧٣
	Ciliary body process atrophy after uveitis	٧٤
	Multiple iridociliary cysts	٧٦
	Isolated ciliary body cyst	٧٦
	Ciliary body melanoma	YY
	Iris nevus	YY
	Ciliary body tumor, thickness measurement	٧٨
	Tumor involving cornea and sparing BM	٧٩
	Tumor involving cornea, BM and stroma	٧٩
	Hyphema following blunt trauma	٨٠
	Intralenticular F.B	٨١
	Glass F.B. in the AC	٨١
	Deep corneal F.B	٨٢
	Descements membrane detachment	۸۳
	Angle recession	٨٤
	Angle recession area	٨٤
	Cyclodialysis	٨٥
	Iridodialysis	٨٥
	Missing zonule after trauma	٨٦
	Traumatic dislocation of PC-IOL	٨٦
	Rupture anterior lens capsule	٨٦
	-	

Introduction

Ultrasound biomicroscopy (UBM) is a high-resolution ultrasound technique that allows non-invasive in-vivo imaging of structural details of the anterior ocular segment at near light microscopic resolution and provides detailed assessment of anterior segment structures, including those obscured by normal anatomical and pathological relations (*Dada et al.*, 7.11).

In general, increasing frequency increases the resolution but decreases tissue penetration, which makes UBM an ideal tool for imaging anterior segment of the eye as UBM is performed with a ° · MHz probe giving resolution of ½ · microns (similar to Image with low power microscope) and the depth of ½mm. (*Liebmann and Ritch*, 1997).

There are many applications regarding this imaging method including imaging the details of The angle, ciliary body, zonule, posterior chamber, so it is helpful in understanding the different types of glaucoma (*Liebmann and Ritch*, 1997).

١

UBM strength lies firstly in its ability to produce cross sections of the living eye at microscopic resolution without violating the integrity of the globe or affecting the internal relationships of the structures imaged (*Palvin and Foster*, 1994), secondly, UBM is not dependent on clarity of the media, it can visualize detailed structures in presence of opacities.

UBM is capable of imaging the cornea, iris, anterior chamber, anterior chamber angle, posterior chamber, and ciliary body with great detail. The structures surrounding the posterior chamber, previously hidden from clinical observation can be imaged and their normal anatomical relationships can be assessed. The various forms of angle closure glaucoma can be differentiated (*Liebmann and Ritch*, 1994).

Important information on the cornea can be obtained by UBM such as intrastromal corneal scars, internal corneal changes after penetrating injuries or keratoplasties, corneal dystrophies and other lesions (*Fries et al.*, 1997). UBM can be considered a useful tool to study keratoconus and to obtain reliable measurements of corneal thickness related to the severity of the disease determined by videokeratography (*Avitabile et al.*, 1994).

UBM is a valuable tool for evaluating childhood cataracts and associated ocular anomalies as well as anterior segment biometric characteristics (El Shakankiri et al., 7...9). Also, the degree and extent of lens subluxation and the degree of zonular defect can be evaluated using UBM examinations preoperatively, which is necessary in the selection of surgical protocol (Liu et al., 7...2).

In cases of trauma, UBM has high clinical value in diagnosis of anterior segment contusion, especially in corneal edema, hyphema and hypotony. Also it can show angle recession, cyclodialysis, iridodialysis, zonular breaking, lens dislocation and vitreous protrusion to posterior chamber (*Lai et al.*, 1997).

Another advantage for UBM that it is a non-invasive method for detecting anterior segment intraocular foreign bodies after perforating trauma. It can be used to accurately diagnose foreign bodies and assist in surgical management, particularly when direct visualization is obscured because of the trauma (Weinberger et al., 1994).

UBM offers an accurate method to evaluate anterior chamber tumor shape, denisty, local invasion (Marigo et al.,

detailed imaging of the tumor's interface with the angle structures may aid the surgeons in choosing the most appropriate technique to ensure total removal (Giuliari et al., 7.11).