Endoscopic Discectomy of Lumbar Disc Prolapse

Thesis

Submitted for partial fulfilment of the requirement of M.D. Degree in Neurosurgery.

Yaser Atef Mohamedy El-Serafy (M.B.Bch., & M.Sc. of Surgery)

Supervised by

Prof. Dr.: Alaa El-Din Abd El-HayProfessor of Neurosurgery, Faculty of Medicine, Ain-Shams University.

Prof. Dr.: Mohamed Ashraf Ghobashy Professor of Neurosurgery, Faculty of Medicine, Ain-Shams University.

Dr.: Wael Abd El-Monem Ezzat

Assistant Professor of Neurosurgery, Faculty of Medicine, Ain-Shams University.

Faculty of Medicine Ain-Shams University - 2007 -

<u>Acknowledgment</u>

First of all, my deep thanks are to *God*, without his helps and cares, this work could not be accomplished.

I would like to express my sincere thanks and appreciation to my honored *Professor Dr. Alaa El-din Abd El-Hay*, *Professor of Neurosurgery*, *Faculty of medicine*, *Ain –Shams university*. No words can describe his stimulating supervision, continuous encouragement and support. It has been an honor and privilege to work under his generous supervision.

Also, I would like to express my deepest thanks and appreciation to my *Professor Dr. Mohamed Ashraf Ghobashy*, *Professor of Neurosurgery*, *Ain-Shams Faculty of medicine*, for his great help, support and continuous advice which helped me to overcome many difficulties to complete this work.

My deep gratitude goes to my *Professor Dr. Wael* Abd El-Monem Ezzat, Assistant Prof. of Neurosurgery Ain-shams Faculty of medicine, for his great help, continuous support, and meticulous supervision throughout this work. No words can describe his helpful and stimulating supervision.

Yaser Atef El-Serafey.

List of Contents

- Introduction.	Page
- Aim of the work	
- Review of literature :	
 Development and Anatomy Biomechanics. Pathophysiology. Pathology. Epidemiology and Risk factors. Clinical picture. Investigation. Non-surgical treatment. Surgical Treatment. Endoscopic discectomy. 	
- Material and Methods	120
- Results.	149
- Patient's Presentation	174
- Discussion	188
- Summary	209
- Conclusion.	215
- References.	219
- Arabic Summary	

List of Abbreviations

AF: Annulus Fibrosus.

AMD: Artroscopic Mico-Discectomy.

NP: Nucleolus Pulposus.

METR'x: *Micro-Endoscopic Tubular Retractor system.*

MED: Mico-Endoscopic Discectomy. **MRI**: Magnetic Resonance Image.

MISS: Minimal Invasive Spinal Surgery.

CT: Computed Tomography. CSF: Cerebro-Spinal Fluid.

RM: Range of Motion.

HNP: Herniated Nucleolus Pulposus.

FSU: Functional Spinal Unit. **GAG**: Glycosaminoglycan.

GAGS: Glycosaminoglycan Sulphate.
Gd.CM: Gadolinium Contrast Medium.

NSAIDs: Non-Steroidal Anti-inflammatory Drugs.

PLA2: Phospholipase A2. **Ig-G**: Immunoglobuline G.

SEPs: Somato-sensory Evoked Potentials.

MEPs: Motor Evoked Potential.

EMG: Electromyography.

SN: Spinal Nerve.

SLRT: Straight Leg Raising Test. FNST: Femoral Nerve Straight Test.

KFT: Knee Flexion Test. **LDP**: Lumbar Disc Prolapse.

LBP: Low Back Pain. L3-4 disc: Lumbar 3/4 disc. L4-5 disc: Lumbar 4/5 disc.

L5-S1 disc: Lumbar 4 / Sacral 1 disc.

LD: Laparoscopic Discectomy.

PLD: Percutaneous Lumbar Discectomy.

TENS: Trans-cutaneous Electrical Nerve Stimulation.

IDET: Intra-Discal Electro-thermal Therapy.

IDP: Intra-Discal Pressure.

TNF-alpha: Tumour Necrotic Factor-alpha.

ESR: Erytherocyte Sedimentation Rate.

LOS: Length Of Hospital Stay.

OA: Osteoarthritis.OM: Osteomylitis.

RA: Rheumatoid arthritis.

List of Figures

		Development of the lumbar spine	
		Typical lumbar vertebra	
Fig.	3:	Axial and sagittal cuts of the lumbar spine	p. 9.
Fig.	4:	Lumbar nerve roots	p. 11.
_		Nerve root anomalies	-
Fig.	6:	Nerve supply of the lumbar disc	p. 14.
		Ligaments of the lumbar region	
		Muscles of the lumbar region	
Fig.	9:	Blood supply of the disc	p. 22.
Fig.	10	: Batson's venous plexus	p. 23.
Fig.	11	: Structures of the normal disc	p. 25.
Fig.	12	: Intra-discal pressure of different postures	p. 33.
Fig.	13	: Normal disc and degenerative disc	p. 42.
Fig.	14	: Stages of disc herniation	p. 46.
Fig.	15	: Degrees of disc herniation	p. 49.
Fig.	16	: Sites of disc herniation	p. 50.
Fig.	17	: Schmorl's nodule	p. 51.
Fig.	18	: Sciatica and SLR test	p. 66.
Fig.	19	: Sensory dermatomes of the lower limbs	p. 72.
Fig.	20	: Plain X-ray of lumbar disc herniation	p. 80.
Fig.	21	: Myelography of lumbar disc herniation	p. 81.
Fig.	22	: CT scan of lumbar disc herniation	p. 82.
Fig.	23	: MRI of lumbar disc herniation	p. 84.
Fig.	24	: MRI of normal disc and degenerative disc	p. 85.
Fig.	25	: METR'x system	p. 128.
Fig.	26	: Instruments of the METR'x system	p. 130.
Fig.	27	(A): Endospine instruments	p. 131.
Fig.	27	(B) : Endospine set-up	p. 132.
Fig.	27	(C): Endospine operative steps	p. 133.
Fig.	27	(D) : Endoscopic picture of the endospine	p. 134.
Fig.	28	: Collective pictures of the METR'x system	p. 141.
		(A): Pictures of the operative steps of a case of METR'x	
Fig.	29	(B): Pictures of endoscopic views and scar	p. 143.
		: Age distribution incidence	
		: Sex distribution incidence	
Fig.	32	: Sciatica incidence	p. 151.
_		: Sciatica duration	-
Fig.	34	: Low back pain duration	n 153

Fig.	35	: Relation between sciatica and LBP	p. 154.
Fig.	36	: Preoperative back signs	p. 155.
Fig.	37	: Motor deficit and diminished ankle reflex	p. 156.
Fig.	38	: Sensory distribution	p. 157.
Fig.	39	: Stretch signs	p. 158.
Fig.	41	: Degrees of SLR test	p. 159.
Fig.	42	: Preoperative MRI findings	p. 161.
		: Surgical procedure	
		: Postoperative complications	
Fig.	45	: Satisfaction and un-satisfaction results	p. 164.
Fig.	46	: Outcome results according to MacNab's criteria	p. 166.
_		: Pictures of the preoperative MRI of the case No.1	
		: Pictures of the postoperative MRI of the case No.1	
Fig.	49	: Pictures of the preoperative MRI of the case No.2	p. 177.
Fig.	50	: Pictures of the postoperative MRI of the case No.2	p. 177.
Fig.	51	: Pictures of the preoperative MRI of the case No.3	p. 179.
		: Pictures of the postoperative CT scan of the case No.3	
Fig.	53	: Pictures of the preoperative MRI of the case No.4	p. 180.
_		: Pictures of the postoperative MRI of the case No.4	
_		: Pictures of the preoperative MRI of the case No.5	-
_		: Pictures of the postoperative CT scan of the case No.5	-
		: Pictures of the preoperative MRI of the case No.6	
_		: Pictures of the postoperative CT scan of the case No.6	-
_		: Pictures of the preoperative MRI of the case No.7	-
Fig.	60	: Pictures of the postoperative MRI of the case No.7	p. 187.

List of Tables

Table 1 : Lumbar disc syndromes	p. 74.
Table 2: The sensitivity and specificity	p. 75.
Table 3: Differential diagnosis of LBP	
Table 4 : Differential diagnosis of sciatica	p. 77.
Table 5 : Modified McNab's criteria	
Table 6: Age distribution	
Table 7: Sex incidence	p. 150.
Table 8 : Sciatica incidence	p. 152.
Table 9 : Duration of sciatica	p. 153.
Table 10 : Duration of low back pain	p. 154.
Table 11: Predominant symptoms	p. 155.
Table 12: Back signs incidence	p. 157.
Table 13 : Motor deficit and reflex affection	p. 158.
Table 14: Sensory deficit incidence	p. 159.
Table 15 : Stretch signs incidence	p. 160.
Table 16: Degrees of SLRT incidence	
Table 17: Pre-operative MRI findings	
Table 18: Types of surgical procedure	
Table 19 : Incidence of postoperative complications	p. 164.
Table 20 : Patient's satisfaction incidence	p. 165.
Table 21: Correlation between complications and outcome	p. 169.
Table 22: Correlation between patient's age and outcome	p. 170.
Table 23: Correlation between patient's sex and outcome	p. 171.
Table 24: Correlation between duration of sciatica and outcom-	ep. 172.
Table 25: Correlation between degree of SLRT and outcome	p. 173.
Table 26: Correlation between preoperative MRI and outcome	p. 174.
Table 27 : Comparison with micro-discectomy in literatures	p. 201.
Table 28 : Comparison with Foley and Smith, 1997	p. 205.
Table 29: Comparison with Palmer, 2002	p. 206.
Table 30: Comparison with Isaacs, 2005	p. 207.

Introduction through the history

Humans have been plagued by back and leg pain since the beginning of the recorded history. Primitive cultures attributed it to the work of demons; *Goodrich*, 2004.

The term sciatica gained recognition since 1764, when the *Italian Cotunio* described its manifestation. Its signs and symptoms were further defined by *Putti* and *Valleix* in 1917; *Dyck*, 1984.

In 1934 Mixter and Barr attributed sciatica to lumbar disc herniation and suggested surgical treatment.

Symptomatic lumbar disc disease is responsible for a tremendous cost to society. It is believed to be a major contributor to the estimated 60 % to 80 % lifetime incidence of low-back pain in the general population. Patients with radiculopathy represent another large segment of the population who consume care costs related to lumbar disc disease; *Baldwin*, 2002.

The standard procedure for disc removal was a total laminectomy followed by a transdural approach to the disc. In 1939 Semmes presented a new procedure to remove the ruptured intervertebral disc that included subtotal laminectomy and retraction of the dural sac to expose and remove the ruptured disc with the patient under local anesthesia. This procedure, now is the classic approach for the removal of an intervertebral disc, it

1

has been improved with the use of microscope and video imaging; *Wood*, 1998.

In the past 60 years, the traditional surgical treatment of herniated lumbar discs has consisted of an open laminectomy with visualization and extraction of herniated fragments; *Kambin*, 1997.

It is important to emphasize that less muscle dissection that occurs, the less potential dead space there is for haematoma when a limited wound incision is made, there is a reduced requirement for healing by secondary intention and in the end less scar formation. A further disadvantage of a long incision is the denervation of the paravertebral muscles on *EMG*, which occurs in 96 % of patients which persist for many years following surgery and re-innervation is only partial; *Delamarter and McCulloch*, 1997.

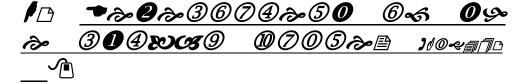
The evolution from blind manual posterolateral discectomy to endoscopic or microscopic extraction of disc fragments in the late 1980's became feasible because of the technological advances and the availability of small caliber, high-resolution glass fiber-optics that enabled the spine surgeon to visually differentiate anatomically normal from abnormal spine structures; *Hermantin et al.*, 1999.

One of the major benefits of minimally invasive discectomy is early mobilization. A patient who can get out of bed the same day as the surgical procedure and be at home as an out-patient on the same day of the procedure a tremendous advantages over a patient who has a more painful wound and requires longer bed rest and hospitalization; *Bookwlter et al.*, 1994.

In 1997 Foley and Smith introduced the microendoscopic discectomy procedure; utilizing an endoscope through a tubular retractor system and long tapered instrumentation designed specifically for use in a small working space, allowed the spinal surgeons to reliably decompress a symptomatic lumbar nerve root via an endoscopic minimally invasive approach. This procedure offers many advantages, by reducing tissue trauma, allowing direct visualization of the nerve root and disc pathology, allowing bony decompression, enables the surgeon to address not only contained lumbar disc herniation, but also sequestrated disc fragments and lateral recess stenosis; Perez-Cruet, 2002.

Endoscopic lumbar discectomy with *ligmentum flavum* preservation technique is done by retraction the ligament medially after releasing it from superior, inferior and lateral edges. Then restore it anatomically (as a natural barrier) after disc removal and root decompression. This technique is feasible under the endoscope and helpful in reducing the epidural fibrosis and post-operative scar formation; **Zhou et al.**, **2005**.

The use of endoscope in lumbar disc herniation reduce the incidence of the post-discectomy syndrome by more than twice; *Matveev et al.*, 2005.

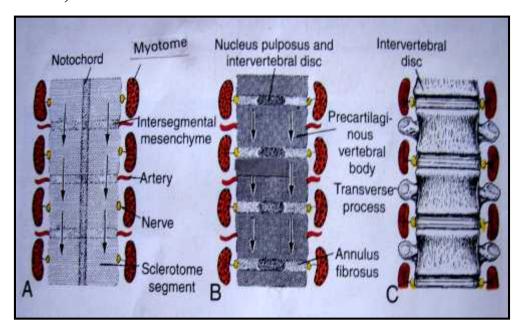

<u>Aim of the Work</u>

Endoscopic lumbar discectomy will be done at Ain-Shamas university hospitals for 40 patients with lumbar disc herniation, presenting with single level, unilateral disc prolapse in a virgin back. Non of the patients have multiple disc levels, tight canal stenosis, congenital anomalies of the working level, previous surgery of the spinal level, signs of spinal instability, and psychological disorder.

For all the patients, presenting with specific signs of root dysfunction in form of motor or sensory deficits, failure of conservative treatment in form of medical and physical therapy, clinical evaluation as well as radiological investigations will be done to confirm diagnosis of the side and the level of the disc herniation.

For all the patients, *Endoscopic lumbar discectomy* will be done with follow-up survey in form of clinical outcome, hospital stay, morbidity, and the results will be compared with that of the other results of *Endoscopic lumbar discectomy* in literatures, and with the results of *Micro-discectomy* in literatures, to evaluate the new modalities of *Endoscopic lumbar discectomy*.

Development and Anatomy


During the 4th week of development, cells of the sclerotomes shift their position to surround both the spinal cord and notochord. This positional change is effected by differential growth of the surrounding structures and not by active migration of sclerotome cells. This mesenchymal column retains traces of its segmental origin as the sclerotomic blocks are separated by less dense areas containing intersegmental arteries; Sadler, 1996.

During further development, the caudal portion of each sclerotome segment proliferates extensively and condenses. This proliferation is so extensive that it proceeds into the subjacent intersegmental tissue and binds the caudal half of one sclerotome to the cephalic half of the subjacent sclerotome. Hence, by incorporation of the intersegmental tissue into the precartilaginous vertebral body. So, the body of the vertebra becomes intersegmental in origin.

Mesenchymal cells located between cephalic and caudal parts of the original sclerotome segment do not proliferate but fill the space between two precartilaginous vertebral bodies. In this way, they contribute to formation of the intervertebral disc . Although the notochord regresses entirely in the region of the

vertebral bodies, it persists and enlarges in the region of the intervertebral disc. Here it contributes to the nucleus pulposus, which is later surrounded by circular fibers of the annulus fibrosus. Combined, these two structures form the intervertebral disc.

Rearrangement of *sclerotomes* into definitive vertebrae causes the *myotomes* to overbridge the intervertebral discs, and this alteration gives them the capacity to move the spine. For the same reason, intersegmental arteries, at first located between the sclerotomes, now pass midway over the vertebral bodies. Spinal nerves, however, come to lie near the intervertebral discs and leave the vertebral column through the intervertebral foramina; *Sadler*, 1996.

Fig. (1): Development of the lumbar spine, A: Sclerotome and Myotome formation at the 4^{th} week of development, B: Disc formation, C: Vertebral body formation; Sadler, 1996.

LUMBAR VERTEBRA, (Fig. 2):

Normally, there are five lumbar vertebrae and five associated discs. Because the lumbar vertebrae are subjected to the greatest loads in the spinal column, they are relatively massive structures. In a small percentage of patients, abnormal segmentation results in either sacralization of the fifth lumbar vertebra or in lumbarization of the first sacral segment; *Wienstien*, 1992.

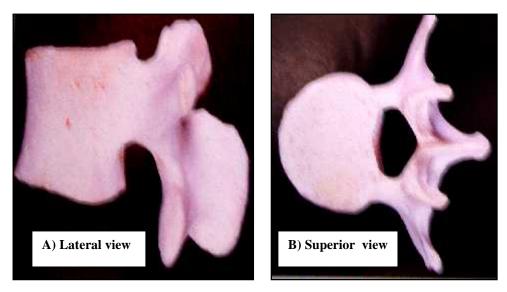


Fig. (2): Pictures of typical lumbar vertebra, A: Lateral view, and B: Superior view (seen from upward), show, Vertebral body, Pedicles,

Laminae, Spinous process, Lateral processes, Facets, Superior notch, Inferior notch, and Vertebral canal; Agur, 1996.

Each lumbar vertebra consists of a vertebral body and a neural arch. The neural arch consists of two pedicles, the transverse processes, the superior and inferior articular facets, the laminae, and the spinous process. Each vertebra is attached to its neighbors by the intervertebral disc, a variety of spinal ligaments, and the articular facet joints. In the upper lumbar spine, the facet joints are oriented in a vertical direction, the inferior facet faces laterally, and the superior facet, faces somewhat medially. The effect of this anatomical arrangement is the limitation of axial rotation that permits flexion/extension. However, at the two lowest vertebrae, the facets are directed somewhat more horizontally, and this change permits greater axial rotation in the lower lumbar spine. Such increased mobility may explain the more common occurrence of disc hemiation at *L4* and *L5*; *Wienstien*, *1992*.

THE VERTEBRAL CANAL, (Fig. 3):

The spinal canal is formed by the neural arch dorsally and the vertebral bodies and discs ventrally. In most individuals, the spinal cord ends at the lower end of L1; the cauda equina, composed of motor and sensory nerve roots, occupies the dural sac below that level. Nerve roots leave the canal at each level of the lumbar spine (although, anomalies are possible). Normally, as each root leaves the dural sac, it crosses the disc space and enters the lateral recess. This space is formed by the posterior aspect of