

Ain Shams University Faculty of Engineering Electric Power and Machines Department

Aggregation of equivalent models of large wind farms connected to power grids under normal operation and some disturbances

BY

Eng. Mona Ali Bayoumi Elewa

A Thesis Submitted to
Department of Electrical Engineering
In Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

Supervisors

Prof. Dr. / Mohamed Abdel latif Badr

Prof. Dr. / Ahmed Mohamed Atallah

Electrical Power & Machine Department

Electrical Power & Machine Department

Faculty of Engineering Ain Shams University

Faculty of Engineering Ain Shams University

Cairo 2016

Ain Shams University Faculty of Engineering Department of Electrical Power and Machines

Aggregation of equivalent models of large wind farms connected to power grids under normal operation and some disturbances

A Thesis Submitted in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy

by

Mona Ali Bayoumi Elewa

Supervisord by

Prof. Dr. / Mohamed Abdel latif Badr

Department of Electrical Power and Machines - Ain Shams University

Prof. Dr. / Ahmed Mohamed Atallah

Department of Electrical Power and Machines - Ain Shams University

Cairo

2016

Ain Shams University Faculty of Engineering Department of Electrical Power and Machines

Aggregation of equivalent models of large wind farms connected to power grids under normal operation and some disturbances

A Thesis Submitted in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy

by

Mona Ali Bayoumi Elewa

Examiners Committee

Name&Affiliation

Prof. Dr. / Elwi Eissa El-Koly (External examiner)

Department of Electrical Power and Machines - Menoufia University

Prof. Dr. / Adel Sidqi Emarah

Department of Electrical Power and Machines - Ain Shams University

Prof. Dr. / Mohamed Abdel latif Badr

Department of Electrical Power and Machines - Ain Shams University

Prof. Dr. / Ahmed Mohamed Atallah

Department of Electrical Power and Machines - Ain Shams University

Date:	 /	٠.	 /			

Acknowledgment

First of all we thank our GOD for establishment this work; next I would like to thank and extend my sincere gratitude to my advisor Prof. Dr. Mohamed Abdel latif Badr for his constant support, guidance and wisdom.

My appreciation goes to Prof. Dr. Ahmed Mohamed Atallah for his generosity, kindness and support.

My gratitude goes to all electrical engineers of faculty of engineering for their concern and help.

Thanks to my husband, my parents and my family for giving me unconditional love, support and motivation.

Abstract

With increasing the penetration rate of wind power, wind farm begins to affect the power systems, so the modeling of wind farms for grid integration studies is now an important issue. Such effect is studied and justifies the need for a dynamic model of a wind farm comprising a large number of generators; however, detailed dynamic models demand much simulation computation time. Aggregation technique of wind farm is required in order to decrease the model order with keeping its accuracy high.

The first part of the thesis studies some of the different types of aggregation techniques of a large wind farm. It operates with the most commonly used wind generators in a wind farm such as doubly fed induction generator (DFIG), permanent magnet synchronous generator (PMSG), and squirrel cage induction generator (SCIG). Firstly, we study the complete model of each wind generator type, and then present some of the different types of aggregation techniques. The chosen five techniques are, full aggregated model utilizing equivalent wind speed (FAM-EWS), full aggregated model utilizing average wind speed (FAM-AWS), multi full aggregated model utilizing equivalent wind speed (MFAM-EWS), mixed semi-full aggregated model (MSFAM) and semi-aggregated model (SAM). The thesis compares the complete wind farm models and the studied types of aggregation techniques; the comparison is based on the proximity of the simulation results of the normal and abnormal response for each complete wind farm model and the aggregated wind farm models. These techniques have been carried out by MATLAB/Simulink program to compare between the complete model by using different effects such as values of wind farm active power, reactive power, the voltage at the point of common coupling (PCC) and system dynamics to show each of aggregation technique effectiveness.

The thesis focuses on some wind turbines trip. It uses a detector to adjust the aggregated wind farm model (AWF) according to the status of the wind turbines (in service or not) without stopping the simulation process.

There are two options for transmitting the generated power of wind farms to AC grid (1) High-voltage alternating current (HVAC) or (2) High-voltage direct current (HVDC). The thesis studies the two options of transmitting the generated power.

The second part of the thesis works with offshore wind farm integrated to weak and passive AC grid systems through multi-terminal high voltage direct current (MT-HVDC) transmission system. Furthermore, the effect of utilizing a superconducting magnetic energy storage unit in a hybrid power system containing offshore wind farm is studied. The behavior of the offshore wind farm integrated to weak and passive AC grid system is tested for transient responses on the network and the offshore wind farm by MATLAB/Simulink program.

$\underline{KeyWords}$

Wind farm; doubly fed induction generator (DFIG); permanent magnet synchronous generator (PMSG); squirrel cage induction generator (SCIG); and superconducting magnetic energy storage (SMES).

Table of Contents

Acknowledgement	I
Abstract	II
Table of contents	III
List of Symbols	VI
List of Abbreviation	X
List of Figures	XI
List of Tables	XIV
Chapter (1) Introduction	1
1.1 Introduction	1
1.2 Background Literature Survey	4
1.3 Thesis Outline	6
1.4 Future work	6
Chapter (2) Wind Farm Aggregation Techniques	7
2.1 Introduction	7
2.2 Aggregated Models	8
2.2.1 Full aggregated model using equivalent wind speed (FAM_EWS)	8
2.2.2 Full aggregated model using average wind speed (FAM_AWS)	10
2.2.3 Multi Full aggregated model using equivalent wind	speed
(MFAM_EWS)	11
2.2.4 Semi aggregated model (SAM)	12
2.2.5 Mixed semi full aggregated model (MSFAM)	12
2.3 DFIG Wind Farm	13
2.3.1 DFIG turbine model	13
2.3.1.1 The model of turbine rotor	14
2.3.1.2 Drive train model	14
2.3.1.3 Generator model	15
2.3.1.4 Converters and Control System	18
2.3.1.4.1 Rotor side converter (RSC) controller	18
2.3.1.4.2 Grid side converter (GSC) controller	19
2.3.1.5 Pitch angle control	20
2.3.2 Aggregation simulation for DFIG wind turbines	20
2.3.2.1 System under study	21
2.3.2.2 Simulation results	21
2.3.2.2.1 Normal Operation	21
2.3.2.2.2 Grid Disturbance	23
2.4 PMSG Wind Farm	25
2.4.1 Modeling of PMSG turbine	25
2.4.1.1 PMSG model	26
2.4.1.2 Model of power converter	27
2.4.1.3 Braking resistor	27
2.4.1.4 Model of GSC	28
2.4.1.5 Control Strategy	28
2.4.1. 5.1 Rotor side converter (RSC)	29

	2.4.1.5.2 Grid side converter (GSC)	29
	2.4.1.5.3 Pitch angle control	29
2.4	4.2 Aggregation simulation for PMSG wind turbines	29
	2.4.2.1 System under study	30
	2.4.2.2 Simulation results	30
	2.4.2.2.1 Normal operation	30
	2.4.2.2.2 Grid disturbance	31
Chapter (3) A D	Detector for Modifying the Aggregated Wind Farm Model Acco	rding to
the Running or	Fripping Wind Turbines in a Wind Farm	34
3.1 Introd	uction	34
3.2 The P	roposed Detector	34
3.3 SCIG	Wind Turbine Model	37
3	3.1 The model of generator (SCIG)	38
3	3.2 Pitch angle control	39
3.4 Simul	ation Studies	40
3.4	4.1 System under study	40
	3.4.1.1 Case 1: Normal operation	40
	3.4.1.2 Case 2: tripping some wind turbine without a detector	41
	3.4.1.3 Case 3: tripping some wind turbine with a detector	43
	3.4.1.4 Case 4: Retrieve some wind turbine with a detector	44
	3.4.1.5 Case 5: 3-Q short circuit in one PMSG wind turbin	e with a
	detector	46
Chapter (4) Per	formance Analysis of SMES Integrated with Offshore Wind I	'arms to
Power Systems t	hrough MT-HVDC	48
4.1 Introd	uction	48
4.2 Confi	guration and Elements of VSC-HVDC Systems	48
4.3 VSC I	Modeling and Control	52
4.3	3.1 Modeling of VSC	52
4.3	3.2 VSC Mathematical model	54
4.3	3.3 VSC connected to offshore wind farm and its controller	55
4.3	3.4 VSC connected to grid and its controller	56
4.4 Syster	m Description and Simulation Results	58
	4.4.1 Normal operation	58
	4.4.2 Grid disturbance	59
4.5 Perfor	rmance Analysis of SMES Integrated with Offshore Wind Farms	to Power
Systems t	hrough MT-HVDC	60
4.5	5.1 SMES system and its control system	60
4.5	5.2 System description	62
4.5	5.3 Simulation results	63
Chapter (5) Co	nclusion	64
Appendices		68
References		70
List of publicatio	ns	78

List of Symbols

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{lll} C & : The \ capacitor \ capacitance \ (F) \\ C_p & : The \ turbine \ performance \ coefficient \\ C_{p_opt} & : An \ optimum \ value \ of \ performance \ coefficient \\ d-q & : Direct \ and \ quadrature \\ D & : The \ chopper \ duty \ cycle \\ D_m & : The \ damping \ of \ the \ mechanical \ coupling \\ e'_d \ and \ e'_q & : The \ internal \ transient \ voltage \ components \ of \ the \ the venin \ equivalent \ of \ induction \ generator \\ E' & : The \ internal \ transient \ voltage \ of \ the \ the venin \ equivalent \ of \ induction \ generator \\ E_{SMES} & : The \ energy \ storage \ in \ SMES \ coil \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{lll} D & : The \ chopper \ duty \ cycle \\ D_m & : The \ damping \ of \ the \ mechanical \ coupling \\ e'_d \ and \ e'_q & : The \ internal \ transient \ voltage \ components \ of \ the \ the venin \ equivalent \ of \ induction \ generator \\ E' & : The \ internal \ transient \ voltage \ of \ the \ the venin \ equivalent \ of \ induction \ generator \\ E_{SMES} & : The \ energy \ storage \ in \ SMES \ coil \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} e'_d \text{ and } e'_q & : \text{The internal transient voltage components of the thevenin} \\ & equivalent of induction generator \\ E' & : \text{The internal transient voltage of the thevenin equivalent of induction generator} \\ E_{SMES} & : & \text{The energy storage in SMES coil} \end{array}$
equivalent of induction generator $E' \qquad : The \ internal \ transient \ voltage \ of \ the \ thevenin \ equivalent \ of \ induction \ generator \\ E_{SMES} \qquad : The \ energy \ storage \ in \ SMES \ coil$
$E' \qquad : The internal transient voltage of the thevenin equivalent of induction generator \\ E_{SMES} \qquad : The energy storage in SMES coil$
E _{SMES} : The energy storage in SMES coil
index j . Refers to each marvidual wind
index d : Refers to the direct components
index q : Refers to the direct components
index s : Refers to the stator
index r : Refers to the rotor
index eq : Refers to equivalent
index ph : Refers to each of the phase
i : Denotes the generator current
$i_{ m ds},i_{ m qs}$: The components of the generator (stator) current
$i_{ m dr},i_{ m qr}$: The rotor currents
$i_{\rm dg}, i_{\rm qg}$: The components of wind turbine generation current (the grid current)
i _{DC} : The direct current delivered through the dc side of the converter (A)
$i_{\rm d}, i_{\rm q}$: The components of the current flowing at the ac side of the converter
$i_{d}^{*}(i_{d_ref}), i_{q}^{*}(i_{q_ref})$: The references components of the current flowing at the converter
I _c : The capacitor current
I _g : The wind turbine generation current (the grid current)
I _s : The generator (stator) current
I _r : The rotor current (rotor side converter current)
I _{ph} : Three phase current
I _o : The controllable current source into the DC bus
$i_{\rm L}$: The direct current flowing through the dc link
$i_{ m dc},i_{ m qc}$: The components of the capacitor current
I _{SMES} : The DC current flowing through the SMES coil
J_r : The rotor inertia (s)
J _g : The generator inertia (s)
K _m : The stiffness of the mechanical coupling
L : leakage inductance of the phase reactor (H)
$L_{\sigma s}$: The stator leakage inductance
$L_{\sigma r}$: The rotor leakage inductance
L_{m} : The magnetizing inductance
L_{ds}, L_{qs} : The stator inductances

```
: The grid inductances
L_{g}
                                            : The components of the grid inductances (H)
L_{dg}, L_{gg}
                                             : The inductance of the coil
L<sub>SMES</sub>
                                  : The modulation index
m_{\rm ph}
                              : The number of wind turbines in a wind farm
n
p
                               : The number of pole pairs
P_{\rm w}
                         : The aerodynamic power (W)
                       : The equivalent (aggregated) generated active power
P_{g,eq}
P_{ac}
                                 : The active power exchanged at the common bus
                             : The active power of the DC-link
P_{DC}
                       : The active power generated at PCC of a wind farm
P_g
P_s
                               : The output active power of the stator winding (generator)
P_r
                         : The output active power of the rotor winding
P_{loss} \\
                             : Power losses
PSMES
                       : The power absorbed or delivered by SMES coil
        : The reactive power generated at PCC of a wind farm (var)
Q_g
                          : The output reactive power of the stator winding (generator)
Q_{s}
                               : The output reactive power of the rotor winding
Q_r
                          : The reactive power exchanged at the common bus
Qac
                               : The equivalent (aggregated) generated reactive power
Q_{g,eq}
                               : The turbine rotor radius (length of the blade) (m)
R_{\rm w}
                        : The stator resistance (\Omega)
R_s
                          : The rotor resistance
R_r
R
                               : The resistance of the phase reactor
R_{g}
                           : The grid resistance
      : Represents equivalent resistance of both switching and resistive losses of the converter
R_t
                                   The braking resistor
R_{BR}
                              : The generator slip
S
                         : The apparent power of each cluster (V.A)
S_{i,k}
                                : The rated apparent power of each wind turbines
S_{j}
                           : The rated apparent power of the equivalent wind turbine
S_{ea}
                                : The apparent power of the all wind farm.
S_{M,eg}
                                : The equivalent (aggregated) mechanical torque (N.m)
T_{m,eq}
                          : The mechanical torque of each wind turbines
T_i
T_{\rm w}
           : The mechanical torque of the wind turbine rotor shaft (The aerodynamic torque)
T_{m}
                      : The mechanical torque of the generator shaft
                                    : The generator electrical torque
T_g
               : The electromagnetic torque must be generated by the generator
T_{g\_cmd}
                   : The transient open circuit time constant
T<sub>o</sub>
                     : Denotes the voltage (V)
и
U_g
             : The wind turbine generation voltage (grid voltage)
U_c
                                : The capacitor voltage (grid side converter voltage)
                                 : The rotor voltage (rotor side converter voltage)
U_r
                          : The components of wind turbine generation voltage (grid voltage)
u_{\rm dg}, u_{\rm qg}
                          : The components of the rotor voltage
u_{\rm dr}, u_{\rm qr}
```

: The components of the capacitor voltage (the components of the $u_{\rm dc}, u_{\rm qc}$ grid side converter voltage) : The components of the generator (stator) voltages $u_{\rm ds}, u_{\rm qs}$: The converter input voltage $u_{\rm conv}$: The component of the converter input voltage $u_{\rm dconv}, u_{\rm qconv}$: The components of the common bus voltage $u_{\rm d}, u_{\rm q}$ $u_{d}^{*}(u_{d ref}), u_{q}^{*}(u_{q ref})$: The references components of the common bus voltage : Denotes the wind speed (m/s) : The wind incident on the equivalent wind turbine (m/s) $v_{\rm eq}$: The wind incident on an individual wind turbine $v_{\rm j}$: The average wind incident on the equivalent wind turbine v_{avr} : Three phase voltage at the common bus V_{ph} : The reference voltage generated from the inner current controller V_{ph_ref} : Voltage across the SMES coil V_{SMES} V_{DC} : The capacitor terminal voltage : The system frequency ω : The synchronous speed (rad/s) ω_{s} : The wind turbine rotor speed (rad/s) $\omega_{\rm r}$: The generator (stator) rotor speed (rad/s) (grid frequency) ω_{g} : The equivalent rotational speed (rad/s) $\omega_{g,eq}$ X'_{s} : The transient stator reactance (Ω) X_r : The rotor reactance (Ω) : The magnetizing reactance (Ω) X_{m} : The stator leakage reactance (Ω) $X_{\sigma s}$: The rotor leakage reactance (Ω) $X_{\sigma r}$: The reactance of the compensating capacitors (Ω) X_{c} : The stator reactance (Ω) X_s : The air density (kg/m3) ρ λ : Tip speed ratio (ratio between blade tip speed and wind speed) λ_{opt} :An optimum value of the tip speed ratio : Pitch angle of rotor blades (deg) : Permanent magnetic flux (Wb) Ψ_{m} Ψ_{ds}, Ψ_{ds} : The components of the flux linkage of the stator (Wb) : The components of the flux linkage of the rotor (Wb) Ψ_{dr}, Ψ_{qr}

: The time constant of dc capacitors (ms)

List of Abbreviations

AWF : Aggregated wind farm
ANN : Artificial neural network
AVM : An average value model

B2B : Back to back

BESS : Battery energy storage system CAES : Compressed air energy storage

CWF : Complete wind farm

DFIG : Doubly fed induction generator EWEA : European wind energy association

EWS : Equivalent wind speed

FCM : Fuzzy C means

FAM_EWS : Full aggregated model using equivalent wind speed FAM_AWS : Full aggregated model using average wind speed

GSC : Grid side converter

GWEC : Global wind energy council

GW : Giga watt

HVAC : High voltage alternating current
HVDC : High voltage direct current
IGBT : Insulated gate bipolar transistors

IG : Induction generator

LCC : Line commutated converter LVRT : Low voltage ride through

MT-HVDC : Multi-terminal high voltage direct current

MFAM_EWS : Multi Full aggregated model using equivalent wind speed

MSFAM : Mixed semi full aggregated model MPPT : Maximum power point tracking

OWF : Offshore wind farm

PMSG : Permanent magnet synchronous generator

PC : Power curve

RSG : Rotor side converter
PCC : Point of common coupling

SMES : Superconducting magnetic energy storage

SFCL-MES : Superconducting fault current limiter-magnetic energy storage system

SCIG : Squirrel cage induction generator

SVC : Support vector clustering SAM : Semi aggregated model

TWh : Tera watt hour

VSC : Voltage source converter

VSC-HVDC : Voltage source converter high voltage direct current

WF : Wind farm WT : Wind turbine

List of Figures

Fig.(1-1): Wind capacity installed in world annually	1
Fig.(1-2): Growth rate of wind power	2
Fig.(1-3): Total capacity of wind power installed in the European Union, projected till 2030	2
Fig.(1-4): Wind power energy production in the European Union, projected till 2030	3
Fig.(2-1): A large WF scheme	8
Fig.(2-2): FAM_EWS scheme	8
Fig.(2-3): Power curve of the turbine	10
Fig.(2-5): MFAM_EWS scheme	11
Fig.(2-6): SAM scheme	12
Fig.(2-7): MSFAM scheme	12
Fig.(2-8): Wind turbine configuration of DFIG	13
Fig.(2-9): Drive train model	15
Fig.(2-10): Reference frame of generator	16
Fig.(2-11): Wind turbine of DFIG equivalent circuit	17
Fig.(2-12): A controller of RSC	19
Fig.(2-13): A controller of GSC	20
Fig.(2-14): Pitch angle control	20
Fig.(2-15): An 8.5 MW wind farm	21
Fig.(2-16): (a) Active power; (b) Reactive power; (c) The voltage for normal operation	at
PCC	22
Fig.(2-17): (a) Active power; (b) Reactive power; (c) The voltage for grid disturbances	at
PCC	23
Fig.(2-18): Wind turbine configuration of PMSG	25
Fig.(2-19): Equivalent circuit of PMSG	26
Fig.(2-20): Control system of RSC	29
Fig.(2-21): PMSG wind farm structure	30
Fig.(2-22): (a) Active power; (b) Reactive power; (c) The voltage for normal operation	at
PCC	31
Fig.(2-23): (a) Active power; (b) Reactive power; (c) The voltage for grid disturbance at PCC	32
Fig.(3-1): The function of the detector	35
Fig.(3-2): Flowchart of the proposed detector	36
Fig.(3-3): Wind farm structure	37
Fig.(3-4): Wind turbine configuration of SCIG	38
Fig.(3-5): Wind turbine of SCIG equivalent circuit	39
Fig.(3-6): Pitch angle control	40
Fig.(3-7): Comparison during all running wind turbines at the PCC	41
Fig.(3-8): Comparison at PCC without a detector	42
Fig.(3-9): Comparison at PCC with a detector	44
Fig.(3-10): Comparison at PCC in case 4	45
Fig.(3-11): Comparison at PCC in case 5	46
Fig.(4-1): Monopolar VSC-HVDC system	49
Fig.(4-2): Bipolar VSC-HVDC system	49
Fig.(4-3): B2B VSC-HVDC system	50

Fig.(4-4): Multi terminal VSC-HVDC system	50
Fig.(4-5): Components of converter station	51
Fig.(4-6): Simulink AVM of a VSC	53
Fig.(4-7): AVM of a VSC	53
Fig.(4-8): Control scheme of offshore VSC	56
Fig.(4-9): Control scheme of onshore VSC	57
Fig.(4-10): Inner controller of the current	57
Fig.(4-11): Modulation index limiter	58
Fig.(4-12): OWF connection utilizing VSC transmission	57
Fig.(4-13): Transmitted output active power	58
Fig.(4-14): DC voltage	58
Fig.(4-15): SMES unit components and the chopper control	61
Fig.(4-16): OWF with HVDC system and SMES	62
Fig.(4-17): Active power in case 1	64
Fig.(4-18): SMES current during case 1	64
Fig.(4-19): Active power in case 2	65
Fig.(4-20): SMES current during case 2	65
Fig.(4-21): Active power in case 3	66
Fig.(4-22): SMES current during case 3	66
Fig.(4-23): DC voltage without SMES	67
Fig.(4-24): DC voltage with SMES	67
Fig.(4-25): SMES current during case 4	67

List of Tables

Table (2-1): Accuracy in closeness	24
Table (2-2): Computation time	24
Table (2-3): Accuracy in closeness	33
Table (2-4): Computation time	33