

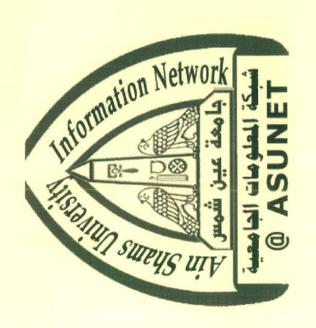
شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم


نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المناد الم

وثائق لم ترد بلاصل

يصعب قراءة بعض الوثائق

TANTA UNIVERSITY FACULTY OF AGRICULTURE KAFR EL-SHEIKH Agronomy of Department

STUDIES ON DIHAPLOID PRODUCTION AND ITS UTILIZATION IN SELECTION FOR SALINITY TOLERANCE IN BREAD WHEAT

BY

Thanaa Hamad Abd El-Salam Abd El-Kreem B. Sc. Agric. Tanta University, 1992

THESIS

Submitted in partial fulfillment of The requirements for the degree

of
MASTER OF SCIENCE

IN (AGRONOMY)

FACULTY OF AGRICULTURE, KAFR EL-SHEIKH, TANTA UNIVERSITY,

(1999)

STUDIES ON DIHAPLOID PRODUCTION AND ITS UTILIZATION IN SELECTION FOR SALINITY TOLERANCE IN BREAD WHEAT

BY

Thanaa Hamad Abd El-Salam Abd El-Kreem B.Sc. Agric Tanta University, 1992.

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

IN
(AGRONOMY)

FACULTY OF AGRICULTURE,
KAFR EL-SHEIK, TANTA UNIVERSITY

(1999)

APROVED BY:

Prof. Dr. Shehab

Prof Dr

Deaf De

Prof. Dr.

- Ya Oal

(Committee in Charge)

Submitted to the Faculty Library:

Date /2/1999

ADVISORS COMMITTEE

Prof. Dr.

Abdel-Aziz Galal Abdel-Hafez
Prof. of Crop Science
Faculty of Agric. Kafr El-Sheikh
Tanta University

Prof. Dr.

Mahmoud Abdel-Hamid El-Hity
Prof. of Crop Science
Faculty of Agric. Kafr El-Sheikh
Tanta University

Dr.

Abdel-Wahed Abdel-Hamid El-Sayed Associate Professor of Agronomy, Faculty of Agric. Kafr El-Sheikh Tanta University

ACKNOWLEDGEMENT

The writer wishes to express his sincere appreciation and deepest gratitude to *Prof. Dr. Abdel-Aziz G.Abdel-Hafez*, Professor of Agronomy Faculty of Agriculture, Tanta University, Kafr El-Sheikh, for acceptance as graduate student, suggesting the problem, guidance, supervision and full assistance in preparing and reviewing the thesis and encouragement throughout the course of this study.

Sincere appreciation and deep gratitude are due to *Prof. Dr. Mahmoud El-Hity*, Prof of Agronomy Faculty of Agriculture, Tanta
University, Kafr El-Sheikh and to *Dr. Abdel-Wahed A. El-Sayed*,
Associate Prof. of Agronomy, Faculty of Agric., Kafr El-Sheikh, Tanta
University for kind supervision of this study.

I feel much indebted to **Prof. Dr. Sobhy Gharib**, Prof. of Agronomy for help in statistical analysis and to **Prof. Dr. El-Mahdy Metwally** Prof. of Vegetable Crop breeding for kind help and advice.

I also gratefully acknowledge the encouragement of **Prof. Dr. M. Sh. El-Keredy** and the Head and members of the agronomy department,

Faculty of Agriculture, Kafr El-Sheikh for facilities offered throughout this study.

The kind co-operation of the staff members of the wheat section, Field Crop Research Institute at the Sakha Research Station is highly acknowledged.

I am obliged to my family for their help and support during the study.

Finally, I would like to thank every body who directory or indirectly contributed in making this study possible.

TO THE SPIRIT OF MY FATHER

CONTENTS

			PAGE
1.	INT	RODUCTION	1
2.	REV	VIEW OF LITERATURE	3
	2.1.	Effect of genotype	3
	2.2.	Effect of media, culturing conditions, growth	12
		regulators and source of carbon	12
		Salt tolerance	22 2 6
		Doubling of chromosome	
3.		TERIALS AND METHODS	
		Plant materials	31
	3.2.	Anther culture procedure	32
		3.2.1. Spikes collection	32
		3.2.2. Pre-culture treatment	33 33
		3.2.3. Spikes sterilization 3.2.4. Inoculation	33
	2.2		35
	3.3.	Experiments	35
		3.3.2. Comparison of different induction media and	
		the source of carbon	35
		3.3.2.1. Plant regeneration	36
		3.3.2.2. Data collection for the induction media	36
		3.3.3. In vitro selection for salt tolerant lines in wheat	37
		3.3.3.1. Data collection for salt tolerance	
		selection	38 40
		3.3.3.2. Experimental design	40
		3.3.3.3. In vitro screening for salinity tolerance.	40
		3.3.3.4. Diploidization of regeneration plants 3.3.3.5. Cytological studies	42
		5.5.5.5. Cytological studies	72
4.	RES	SULTS AND DISCUSSION	43
	4.1.	Comparison of direct medium versus indirect medium in plant regeneration.	4.3

CONTENTS (CONT.)

			PAGE
 -	4.2.	Effect of medium and carbon source on callus	4.5
		induction	47
		4.2.1. Number of induced calli	47
		4.2.2. Callus diameter	55
		4.2.3. Callus weight	56
	4.3.	Plant regeneration	59
		4.3.1. Mean number of plantlets	59
		4.3.2. Number of callus produced plantlets	62
		4.3.3. Number of plantlets/callus	64
	4.4.	Response of individual wheat genotypes to	
		androgensis	67
	4.5.	Selection for salinity tolerance	82
		4.5.1. Effect of salinity on callus weight	83
		4.5.2. Regeneration under salt stress	86
		4.5.3 Heterosis in callus weight and plant	0.0
		regeneration ability	93
		4.5.3.1. Heterosis in callus weight	93
		4.5.3.2. Plant regeneration ability	9 5 9 9
		4.5.4. In vitro screening for salinity tolerance	9 9 100
	16	4.5.5. Chromosome counting and dihaploidization Pre-evaluation of anther culture derived lines	106
6.	SUN	MARY	108
7.	REF	FERENCES	115
	ARA	ABIC SUMMARY	

INTRODUCTION

1- INTRODUCTION

Wheat is the most important cereal crop behind rice and corn allover the world. In Egypt, it is used for making bread and other food stuffs, animal feeding as well as other industrial purposes and covers around 2.5 million feddan area with a national average of about 16.63 ardab/feddan. However, the total production of wheat is not enough to meet the requirements of human consumption. Wheat genetic improvement is an important aim for increasing yield through breeding programs.

Wheat production is confronted by many problems. Diseases such as rusts, smuts and root rots as well as abiotic stresses as drought, heat and salinity stresses etc. are serious problems in Egypt. Breeding of new cultivars is the lonely safety and most effective way to raise and sustain the wheat productivity in our country.

The application of more developed biotechniques in plant breeding is starting to take place everywhere. The production of dihaploids offers great possibilities in shortening the breeding cycle, increasing the selection efficiency, creating variability for selection and solving problems arising in wide crosses. The method enables to produce the homozygous plant in one step, to identify the recessive traits directly on the haploid plants, to accumulate the important traits in easier way, to eliminate the weak or not survivable plants at early times (in petri dish), it needs less number of plants to select plants having valuable characters (easy selection) and needs shorter times and lower costs for the breeding.

The pure lines could be established from anther culture of F_1 hybrid plants, F_2 or F_3 generations. (Schmid *et al.*, 1985). Meanwhile, in the conventional wheat breeding, the F_1 is not segregating in the different traits, the segregations (in the microspores in the anthers) of the F_1 plants in the different F_2 gametes can be used. The breeder must know, if the variability in the gametes on the F_1 -plants are enough or the anther culture should use the recombinations of the F_2 or F_3 generations.

Nowadays, anther culture has been most efficient mean of production of haploids an homozygous dihaploids in wheat. Potentially, productivity of wheat anther culture can be manifold than have been achieved so far (Hu, 1986). Furthermore, new wheat varieties has been released in China by anther culture; Hape 1, Jingknano-1 and An cul. 28 (Hu et al., 1983; Zhou et al. 1991; and DeBuyser et al. (1986).

Screening for salt tolerance has been successfully started in barley; Ye et al. (1987). Rice tolerant lines were selected from anther culture; Reddy and Vaidyanath (1986), Zapata et al. (1991) and Draz et al. (1994). In wheat El-Hennawy (1996b) tried to select salt tolerant lines in Egypt.

Therefore, the purpose of this study was to establish the anther culture technique in our laboratory and (1) to define the most suitable medium as direct or two-step culture (2), to study the genotypic response of some wheat cultivars to *in vitro* haploid induction, (3) to study the effect of carbon source on haploid induction and (4) to select for salt tolerant dihaploid bread wheat through anther culture.

1