

Women's College for Arts Science and Education Zoology Department

MOLECULAR GENETICS AND ENDOTHELIAL PROGENITOR STEM CELLS CIRCULATING DURING CARDIAC CATHETERIZATION PATIENTS

Thesis

Submitted for the Partial Fulfillment of M.Sc. Degree

By

Nesma Mohamed El- Araby Mohamed Elteliet

B.Sc in science (2007)
Women's College for Arts, Science & Education
Ain Shams University

Supervised By

Prof.Dr.

Rokaya Hussien Ahmed Shalaby

Professor of Molecular Biology and Cytogenetics Zoology Department -Women's College Ain Shams University

Prof. Dr.

Soheir Saad Koraa

Professor of Molecular Biology National Center for Radiation Research and Technology - Atomic Energy Authority

Dr.

Amr Mohamed ELiwa Zaher

Lecturer of Cardiac Surgery National Heart Institute

كلية البنات للأداب والعلوم والتربية قسم علم الحيوان

الوراثة الجزيئية ودورة الخلايا الجذعية المهيأة للخلايا المبطنة للأوعية أثناء عمليات قسطرة القلب

رسالة مقدمة كجزء من متطلبات الحصول على درجة الماچستير في العلوم (قسم علم الحيوان) كلية البنات للأداب والعلوم والتربية جامعة عين شمس

مـــــن

نسمه محمد العربي محمد التليت بكالوريوس في العلوم كلية البنات للأداب والعلوم والتربية جامعة عين شمس

تحت إشراف أ.د / رقيه حسين أحمد شلبي أستاذ البيولوجيا الجزيئية والوراثة الخلوية بقسم علم الحيوان- كلية البنات للآداب والعلوم والتربية جامعة عين شمس

د/ عمرو محمد عليوة زاهر مدرس جراحة القلب بمعهد القلب القومي

أ.د / سهير سعد قراعه أستاذ البيولوجيا الجزيئية المركز القومى لبحوث وتكنولوجيا الاشعاع هيئة الطاقه الذرية

Abstract

Interventional cardiology plays a crucial role in the diagnosis and treatment of congenital heart disease. The justification of these interventional procedures is evident because complicated invasive surgery can be avoided. However, patient exposures to X-rays used in these complicated procedures can be high.

The present study is designed to identify the number of circulating endothelial progenitor stem cell (EPCs) (CD133 ⁺/CD34 ⁺ / CD133 ⁺ CD34 ⁺ / SDF-1) by flow cytometry before and after 24 hours from cardiac catheterization, and to study chromosomal aberrations before and after the effect of ionizing radiation on catheterization patients.

This study was carried out on 40 patients before and after 24 hours from cardiac catheterization procedure with age ranged between (40- 65 year) divided into (< 50 years and > 50 years) and the control group included 10 healthy men.

The present study revealed that mean of EPCs (CD133 +,CD34+,CD133+CD34+) was significantly decrease

in patients before and after cardiac catheterization when compared to control group (P<0.0001, P<0.001, P<0.05) and a significant increase in SDF-1 in patients after cardiac catheterization compared to control group.

Concerning cytogenetic study, the structural and numerical chromosomal aberrations significantly increase in patients after cardiac catheterization (21.06%) than patients before cardiac catheterization (5.93%) and control group (4.8%).

It is important to mention that , the karyotyping in all cases found that monosomy in chromosome 20 in patients before cardiac catheterization in 3 cases (15%) and increased to 40% after cardiac catheterization in 8 cases . Also through G/T banding in patients after catheterization found trisomy in chromosome 3 in one case.

The present data found that an inverse correlation between endothelial progenitor stem cells and chromosomal aberrations by increased in the number of progenitor stem cells, the number of structural and numerical chromosomal aberrations was decreased and vice versa.

In conclusion, this study clearly showed that a significant decrease in the number of circulating endothelial cell in patients with coronary artery disease and a significant increase in chromosomal aberration after cardiac catheterization.

The present study suggested that prolonged exposure of man to X-rays may result in genetic damage it is obligatory on the part of hospital management to take appropriate steps to minimize exposure to X-rays at the workplace.

CONTENTS

Subject	Pa	ıge
Acknowle	dgment	
ABSTRAC	CT	
LIST of T	ABLES	
LIST of F	IGURES	
INTRODU	JCTION	1
AIM OF T	THE WORK	8
REVIEW	of LITERATURE	9
1.	Biology of Endothelial Cells	9
2.	Basics of stem cell biology	17
3.	Radiation	43
4.	From classical cytogenetics to molecular	
	cytogenetics	55
5.	The age-dependency of chromosome	
	abnormalities in human during exposed to low-	
	dose ionizing radiation	75

Subject		Page
6.	Stem/progenitor cell and ionizing radiation	79
PATIENT	ΓS and METHODS	83
-	Study Subjects	83
Part	Patient Dose Measurements Using Thermo	0-
(1)	Luminescent Dosimeter (TLD)	
	a) X-Ray System	85
	b) Safety and contrast agents	. 86
	c) Basic X-Ray physics	. 86
	d) TheX-Ray Machine	88
Part	Flow Cytometry Analysis	
(2)		
	I Quantification of Circulating Endother Progenitor Cells	li: 93
	a) Materials	93
	b) Procedure	94
	c) Result Analysis	97
	II Quantification of Stromal Cell-Derive	
	Factor-1	99

Subject		Page
Part (3)	Cytogenetic Investigations	102
a) Materials	102
b) Procedure	103
c) Trypsin / giemsa banding technique	. 106
- S	tatistical Analyses	106
RESULTS	•••••	107
DISCUSSIO	ON	200
RECOMME	ENDATION	217
SUMMARY	7	218
REFERENC	CES	225
ARABIC SU	JMMARY	
ARABIC Al	BSTRACT	

List of tables

Tables		page
1	Classification of stem cells on the basis of	
	differentiating potential (potency)	19
2	Radiologic Quantities and units	46
3	Biological effects of ionizing radiation	48
4	Baseline clinical characteristics of the patients and healthy volunteers	107
5	Mean and SD of age of patients undergoing cardiac catheterization procedure	108
6	Mean and SD of radiation dose mSv /procedure and duration of exposure of patients undergoing	
7	cardiac catheterization procedure Mean and SD of CD34 among patients before and after cardiac catheterization procedure compared	109
8	to controls	111
	compared to controls	113

Tabl	les	page
9	Mean and SD of CD 34 CD133 among patients before and after cardiac catheterization procedure compared to controls	115
10	Mean and SD of CD34 among patients above the age of 50 before and after cardiac catheterization	
11	procedure compared to controls	117
12	procedure compared to controls	119
13	catheterization procedure compared to controls Mean and SD of CD34 among patients below the age of 50 before and after cardiac catheterization	121
14	procedure compared to controls	123
15	procedure compared to controls	125
	cameterization procedure compared to condois	127

Tabl	les	page
16	Mean and SD of SDF-1 among patients below	
	the age of 50 before and after cardiac	129
	catheterization procedure compared to controls	
17	Mean and SD of structural chromosomal	
	aberrations in patients before cardiac	
	catheterization compared to controls	145
18	Mean and SD of numerical chromosomal berrations among patients before cardiac catheterization procedure compared to controls	160
10	Mean and SD of structural chromosomal	
19	aberrations in patients after cardiac catheterization	
	compared to controls	169
20	Mean and SD of numerical chromosomal aberrations among patients before cardiac catheterization procedure compared to controls	185
21	The percentage of total chromosomal aberrations	
	in patients and control groups	197
22	The percentage of monosomy in chromosome 20 of patients before and after cardiac	
	catheterization	198

LIST OF FIGURES

Figure		Pag
1	Stem cell fate	20
2	Origin and differentiation of endothelial progenitor cells. Scheme depicts the potential origin and differentiation of endothelial progenitor cells from hematopoietic stem cells and nonhematopoietic cells.	32
3	Karyotype image, (a) female (46,XX), (b) male (46,XY)	58
4	Examples of human chromosome banding patterns.	59
5	Chromosome morphology and terminology	6
6	A division pattern of stem cells. Asymmetric division of a stem cell involves the generation of 1 stem cell and a more differentiated progenitor cell. In contrast, via a symmetric division, a stem cell is able to maintain and multiply its own cell number. When 2 more differentiated daughter cells are produced, the process is called a restrictive division.	82
7	The electromagnetic radiation	٨,

Figure		Page
8	How Atoms Emit Light	٨٨
9	The heart of X-ray machine	٨٩
10	Photon transition from orbital to orbital	٩.
11	Free electrons generating photons	91
12	Analytical figure which appears the result of the flow cytometer technique in the form of a dot plot	98
13	Flow cytometry system	98
14	Mean and SD of age of patients compared to controls undergoing cardiac catheterization procedure	108
15	Mean and SD of radiation dose mSv of patients undergoing cardiac catheterization procedure compared to controls	109
16	Mean and SD of Radiation dose mSv/procedure and duration of exposure of patients undergoing cardiac catheterization procedure	110
17	Mean and SD of CD34 among patients before and after cardiac catheterization procedure compared to controls.	112

Figure		Page
18	Mean and SD of CD133 among patients before and after cardiac catheterization procedure compared to controls	114
19	Mean and SD of CD34 CD133 among patients before and after cardiac catheterization procedure compared to controls	116
20	Mean and SD of CD34 among patients above the age of 50 before and after cardiac catheterization procedure compared to controls	118
21	Mean and SD of CD133 among patients above the age of 50 before and after cardiac catheterization procedure compared to controls	120
22	Mean and SD of CD 34 CD133 among patients above the age of 50 before and after cardiac catheterization procedure compared to controls	122
23	Mean and SD of CD34 among patients below the age of 50 before and after cardiac catheterization procedure compared to controls	124
24	Mean and SD of CD133 among patients below the age of 50 before and after cardiac catheterization procedure compared to controls	126
25	Mean and SD of CD34 CD133 among patients above the age of 50 before and after cardiac catheterization procedure compared to controls	128

Figure		Page
26	Mean and SD of SDF-1 among patients below the age of 50 before and after cardiac catheterization procedure compared to controls	130
27	Show flowcytometric analysis in control person	132
28	A) Show flowcytometric analysis in patient before cardiac catheterization procedure .B) Show flowcytometric analysis in patient after cardiac catheterization procedure	134
29	A) Show flowcytometric analysis in patient before cardiac catheterization procedure.B) Show flowcytometric analysis in patient after cardiac catheterization procedure	135
30	A) Show flowcytometric analysis in patient before cardiac catheterization procedure .B) Show flowcytometric analysis in patient after cardiac catheterization procedure	184
31	A) Show flowcytometric analysis in patient before cardiac catheterization procedure .B) Show flowcytometric analysis in patient after cardiac catheterization procedure	140
32	A) Show flowcytometric analysis in patient before cardiac catheterization procedure .B) Show flowcytometric analysis in patient after cardiac catheterization procedure	142
33	karyotype plate of normal male (46,XY)	147