Inflammatory Response in Acute Ischemic Stroke Clinical, Laboratory, and Radiological Correlation

THESIS

Submitted For Partial Fulfillment of Master Degree in Neuropsychiatry

By

Ahmed Mohamed Ahmed Moussa

(M.B., B.Ch. Cairo University)

Supervisors

Prof. Dr. Tarek Zuhair Tawfik

Professor of Neurology Faculty of Medicine, Cairo University

Prof. Dr. Foraysa El-Sayed Talaat

Professor of Neurology Faculty of Medicine, Cairo University

Prof. Dr. Mohamed Badawy El-Toukhy

Professor of Radiodiagnosis Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2008 الله المحالية

﴿قَالُوا سَبِحَانُكَ لَا عَلَمَ لَنَا إِلَا مَا عَلَمَنَا إِنْكَ أَنْتَ الْعَلَيْمِ الْحَكِيمِ﴾

> ربلات احظریم

ACKNOWLEDGMENT

First and foremost, thanks to GOD the most beneficent and merciful, to whom I relate any success in my life.

I would like to express my sincerest gratitude to Prof. Dr. **Tarek Zuhair Tawfik**, Professor of Neurology, Faculty of Medicine, Cairo University, for giving me the privilege to work under his supervision and for enlightening me with his instructions, guidance and endless support.

I am sincerely grateful to Prof. Dr. Foraysa El-Sayed Talaat, Professor of Neurology, Faculty of Medicine, Cairo University, for her patience, saving no time or effort in reading each and every word of this study, she was the beating heart of this work and without her it wouldn't have seen the light.

I also would like to thank Prof. Dr. Mohamed Badawy El-Toukhy, Professor of Radiology, Faculty of Medicine, Cairo University, for dedicating so much of his precious time and for his continuous help, guidance and encouragement.

My deepest gratitude, appreciation and thanks to Prof. Dr. **Shahira Elshafie**, Professor of Clinical Pathology, Faculty of Medicine, El-Fayoum University, for her sincere cooperation throughout this work.

Last but not least, I would like to express my deep thanks to all my colleagues and to everyone who helped me throughout this work.

TO MY PARENTS

&

TO THE SOUL OF MY GRANDMOTHER

ABSTRACT

Several studies described an association between acute ischemic stroke and elevated inflammatory markers. This study aimed at evaluating the relationship between inflammatory markers and pathogenesis of acute ischemic stroke, and whether they are correlated to the size of the infarction and severity of the stroke. Twenty patients as well as fifteen control subjects were submitted to history taking, general and neurological examinations, routine battery of investigations, measurements of C-reactive protein, fibrinogen, and IL-6. The results were correlated to both size of the infarction and severity of the stroke after three months. The inflammatory markers were higher in the stroke patients compared to the control group with a positive correlation to both size of the infarct and clinical outcome.

Key Words:

Stroke, CRP, Inflammation, Prognosis

Table of Contents

		Page
 List of Abbreviat 	tion	I
List of Tables		II
List of Figures		III
Introduction		1
• Aim of the Work		3
 Review of Literat 	ture	5
o Acute Cere	ebrovascular Stroke	6
o The Inflan	nmatory Response in Stro	oke 18
	ory Markers and Their Stroke	
o Imaging in	Diagnosis of Acute Cerel	provascular Stroke 43
- Subjects and Met	hods	60
Results		71
- Discussion		
- Summary and Co	onclusion	
 Recommendations 	s	113
References		115
- Appendix		141
 Arabic Summary 		

LIST OF ABBREVIATIONS

ADC : Apparent diffusion coefficient
AHA : American Heart Association

BBB : Blood brain barrier

CAM : Cell adhesion molecule

CCA : Common carotid artery

CDC : Centers for disease control and prevention

CNS : Central nervous systemCRP : C-reactive proteinCT : Computed tomography

CV : Cerebrovascular and cardiovascular

ECASS: European Cooperative Acute Stroke Study Group

GFAP : Glial fibrillary acidic protein

ICA : Internal carotid artery

ICAM : Intercellular cell adhesion molecules

IL-1 : Interleukin-1IL-10 : Interleukin-10IL-6 : Interleukin-6

iNOS : Inducible nitric oxide synthase

MCA : Middle cerebral arteryMCA : Middle cerebral artery

MCP-1 : Monocyte chemo-attractant protein-1MIP-1α : Macrophage inflammatory protein-1α

MMPs : Matrix metalloproteinases

NO : Nitric oxide

PCA : Posterior cerebral artery

PCoA : Posterior communicating artery

PECAM: Platelet endothelial cell adhesion molecule

PWI : Diffusion weighted imagePWI : Perfusion weighted image

ROI : Region of interest

ROS : Reactive oxygen species
TCD : Transcranial Doppler

TGF : Transforming growth factor-β
 TIAS : Transient ischemic attacks
 TNF-α : Tumor necrosis factor-α

VCAM: Vascular cell adhesion molecule

LIST OF TABLES

Table	Title	Page
I	Factors influencing plasma fibrinogen levels	
1	Age distribution of the study groups	
2	Sex distribution of the study groups	69
3	Hypertension in the study groups	71
4	Diabetes in the study groups	71
5	Cardiac diseases in the study groups	72
6	Hyperlipidemia in study groups	73
7	TIAs in study groups	73
8	Smoking in study groups	74
9	Mean CRP concentrations in stroke patients	75
10	Mean concentration of inflammatory markers in study groups	78
11	Mean concentrations of inflammatory markers in males and females	80
12	Mean concentrations of inflammatory markers in embolic and thrombotic infarctions	82
13	The relationship between mean serum concentrations of CRP1, CRP2, CRP3, fibrinogen and IL-6 and size of the infarction	87
14	Mean SSS compared to the infarction size	88
15	Correlation between CRP and clinical variables	90
16	Correlation between fibrinogen and clinical variables	90
17	Correlation between IL-6 and clinical variables	
18	Correlations between inflammatory markers, infarction size and severity of the stroke	93
19	Predictive values of the inflammatory markers	96

LIST OF FIGURES

Fig.	Title	
1	Inflammatory response following acute ischemic stroke	
2	Computer generated CRP molecule	
3	Interactions between the coagulation system and fibrinolyt system	
4	Axial unenhanced CT image showing the hyperdense middle cerebral artery sign	
5	Axial unenhanced CT image showing the MCA dot sign	
6	CT perfusion images	
7	Infarctions percentages according to their sizes	
8	Risk factors among patients and controls	
9	Mean CRP concentrations in stroke and control subjects	
10	Mean Fibrinogen concentrations in stroke and control groups	
11	Mean IL-6 concentrations in stroke and control groups	
12	Mean concentrations of inflammatory markers in males and females	
13	Mean CRP-1 concentrations in different infarction sizes	
14	Mean Fibrinogen concentrations in different infarction sizes	
15	Mean IL-6 concentrations in different infarction sizes	
16	Mean SSS in different infarction sizes	
17	Positive correlation between CRP concentrations and SSS	
18	Positive correlation between fibrinogen concentrations and SSS	
19	Positive correlation between IL-6 concentrations and SSS	
20	Predictive values of the inflammatory markers	

INTRODUCTION

INTRODUCTION

Stroke is one of the most frequent causes of death and disability worldwide, and has a significant clinical and socioeconomic impact. Although different mechanisms are involved in the pathogenesis of stroke, there is an increasing evidence showing that inflammation accounts for its progression, at least acutely (Chamorro and Hallenbeck, 2006).

Inflammatory mediators contribute to stroke risk via various interrelated mechanisms (Lindsberg and Grau, 2003). They also play an important role in the pathogenesis of ischemic stroke at different levels. First, inflammatory parameters such as C-reactive protein (CRP), fibrinogen, or leukocyte counts measured before ischemia are independent predictors of first or recurrent ischemic stroke (Di Napoli et al., 2001). Second, brain ischemia elicits an inflammatory response with a rapid accumulation of granulocytes and later of mononuclear leukocytes around the infarct zone (Garcia et al., 1994).

Elevation of the inflammatory parameters in the acute phase of ischemic stroke is a well-known phenomenon and may result from infectious complications or from the inflammatory reaction of the damaged brain tissue. Necrotic tissue is eliminated by cellular, humoral, and metabolic mechanisms, which are all part of the inflammatory reaction. It is noteworthy that inflammatory markers persist at an increased level after stroke and that such parameters assessed early after ischemia were shown to predict stroke outcome (**Kogure et al., 1996**). Inflammation is among the targets of therapeutic interventions after stroke, thus knowledge on its time course is of great value.

AIM OF THE WORK

AIM OF THE WORK

The present study aimed at evaluating the role of inflammatory markers (CRP, Fibrinogen and IL-6) in the pathogenesis of acute ischemic stroke, and whether these inflammatory markers correlate to both the infarct size and the stroke severity. Moreover, this study also will assess the prognostic value of these inflammatory markers and the possibility of using them as predictors of the clinical outcome.

REVIEW OF LITERATURE

Chapter I

ACUTE CEREBROVASCULAR STROKE

Definition:

Stroke is an abrupt or ictal onset of focal or global neurological symptom caused by ischemia or hemorrhage within or around the brain resulting from diseases of the cerebral blood vessels (Sacco, 1995).

Stroke is the most common life threatening neurological disease. In the United States and industrialized world, it is the third leading cause of death after heart diseases and tumors, besides; it is the most common cause of adult disability (Li et al., 2002).

Pathophysiology and Types of Acute Cerebral Infarction:

Acute vascular occlusion is the central event in acute ischemic stroke precipitating the primary injury by limiting the flow of oxygen and glucose to a region of the brain (Lewandowski and Barsan 2001). When blood supply is interrupted for 30 seconds, brain metabolism is altered. After 1 minute, neuronal function may cease. After 5 minutes, anoxia initiates a chain of events that may result in cerebral infarction; however, if oxygenated blood flow is restored quickly enough, the damage may be reversible (Sacco, 2000).

Cerebral perfusion pressure in any arterial vascular territory is equal to difference between the mean arterial pressure and the venous back pressure (Powers, 1991).

When perfusion pressure is reduced, reflex changes of the cerebro-vasculature occur to maintain the normal delivery of oxygen to the brain and consequently normal neurological function (Barnett, 1992).