

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Engineering Physics and Mathematics Department

Applications of Modern Optimization Techniques in Inversion of Multilayer Dielectric Media

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Engineering Mathematics

Submitted by

Amr Mohammad Emad Eldin Abdel Maksoud Shaltout

B.Sc. of Electrical Engineering
(Electronics and Communications Engineering)
Ain Shams University, 2003
Supervised By

Prof. Dr. Mohammad Ibrahim Hassan

Department of Engineering Physics and Mathematics, Faculty of Engineering,
Ain Shams University

Prof. Dr. Essam Abdel Halim Hashish

Department of Electronics and Electrical communications, Faculty of Engineering, Cairo University

> Faculty of Engineering Ain Shams University 2008

Examiners' Committee

Name:	Amr Mohammad Emad Eldin Abdel Makso	oud
Thesis:	Applications of Modern Optimization Tech	niques in
	Inversion of Multilayer Dielectric Media	
Degree:	Master of Science in Engineering Mathematics	5
Title, Name	e and Affiliation	Signature
Menofia Un Faculty of E Prof. Dr. H Ain Shams I Electronics : Prof. Dr. M Ain Shams I Faculty of E	adya Mohamed Saed El-Hennawy University, Engineering, and Communications Engineering Dept. Iohamed Ibrahim Hassan University,	

Date: 27/12/2008

STATEMENT

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Engineering Mathematics.

The work included in this thesis was carried out by the

author at Engineering Physics and Mathematics the

Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Name: Amr Mohammad Emad Eldin Abdel Maksoud

Signature:

Date: 27/12/2008

Curriculum Vitae

Amr Mohammad Emad Eldin Abdel

Name of Researcher

Maksoud

Date of Birth 27/11/1980

Place of Birth Cairo, Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree June 2003

ABSTRACT

Amr Mohammad Emad Eldin Abdel Maksoud, Applications of Modern Optimization
Techniques in Inversion of Multi Layer Dielectric Media, Master of Science
dissertation, Ain Shams University, 2008.

This dissertation demonstrates the application of a hybrid optimization algorithm of particle swarm optimization and Quasi Newton Optimization method in the problem of inversion of multi layer dielectric slabs.

The dissertation also includes a comparison between Genetic Algorithm and Particle Swarm Optimization and a detailed mathematical analysis of the Particle Swarm Optimization Algorithm. This analysis includes a study of particles trajectories, stochastic convergence analysis and analysis of convergence time.

The algorithm is designed to reconstruct both continuous and discrete dielectric profile slabs. One of the major advantages of the inversion algorithm is that it does not require priori information about the slab permittivity profile. Different reconstruction models are used and comparison has been done between them. The algorithm was applied to both noise free data and noisy data to study the effect of noise on the results. The algorithm is tested for different dielectric slabs showing satisfactory performance, the reconstructed profiles are very close to the original profiles and the algorithm is robust with noise and with the slab profile.

Key words: Electromagnetic Inversion, Dielectric Slabs, Particle Swarm Optimization, Algorithm Analysis, Stochastic Analysis.

ACKNOWLEDGEMENT

I would like to thank my supervisors Prof. Dr. Mohamed Ibrahim Hassan for his continuous guidance, encouragement and help, and Prof. Dr. Essam Abdel-Haleem Hashish for helping me throughout the entire work and teaching me how to be devoted for research. They also taught me how to help others. I would like also to thank them for their patience.

Many Thanks go to my parents. Their patience, care, and love are what made me. I pray to God that I will always be a good faithful son to them. I wish also to thank my wife in being patient with me in the critical time I passed through.

CONTENTS

VII	LIST OF FIGURES	LIST O
XIII	LIST OF ABBREVIATIONS	LIST O
XV	LIST OF SYMBOLS	LIST O
1	INTRODUCTION	INTRO
ODOLOGIES3	CHAPTER 1: ELECTROMAGNETIC INVERSION METHO	СНАРТ
3	1.1 What Is Electromagnetic Inversion?	1.1
6	1.2 DIRECT BASED INVERSION METHODS	1.2
6	1.2.1 Analytical Approximate Methods	1
7	1.2.2 Layer Stripping Methods	1
9	1.3 MODEL BASED INVERSION METHODS	1.3
11	1.4 DIRECT INVERSION VS MODEL BASED INVERSION	1.4
PTIMIZATION	CHAPTER 2: MATHEMATICAL OPTIMIZATION AND O	СНАРТ
13	ECHNIQUES	TECHNIQ
13	2.1 MATHEMATICAL OPTIMIZATION	2.1
15	2.2 LOCAL OPTIMIZATION METHODS	2.2
16	2.2.1 Descent Method	2
17	2.2.1.1 Exact Line Search	
17	2.2.1.2 Backtracking Line Search	
19	2.2.2 Gradient Descent Method	2
19	2.2.3 Steepest Descent Method	2
22	2.2.4 Newton Method	2
24	2.2.5 Quasi-Newton Method	2
26	2.3 GLOBAL OPTIMIZATION METHODS	2.3
28	2.3.1 Genetic Algorithms	2
30	2.3.1.1 Selection	
32	2.3.1.2 Genetic Operationsi	
	•	

	2.3.1.3 The Premature Convergence Problem	34
	2.3.1.3 Effect of GA Operations on Convergence of Chromosomes	. 34
2.3.2	Particle Swarm Optimization	37
	2.3.2.1 The Algorithm of a Simple PSO	37
	2.3.2.2 Drawbacks of PSO	40
	2.3.2.3 Modifications of PSO	42
	2.3.2.3.1 Velocity Clamping	42
	2.3.2.3.2 Constriction Factor	43
	2.3.2.3.3 Guaranteed Convergence PSO (GCPSO)	44
	2.3.2.3.4 Multi-start PSO (MPSO)	46
	2.3.2.3.5 Micro-PSO	46
	2.3.2.3.6 Repel the Swarm to the Optimum	48
	2.3.2.3.7 Attractive and Rupulsive PSO (ARPSO)	48
	2.3.2.3.8 Center PSO	48
	2.3.2.3.9 Selection	49
	2.3.2.3.10 Breeding	49
	2.3.2.3.11 Mutation	50
2.3.3	PSO Vs GA	50
СНАРТЕІ	R 3: MATHEMATICAL ANALYSIS OF PARTICLE SWARM	
	ION	53
	DETERMINISTIC TRAJECTORY ANALYSIS OF SIMPLE PSO	
3.1.1		
3.1.2		
	3.1.2.1 Case: λ_1 and λ_2 Are Both Complex	58
	3,1.2.2 Case: λ_1 and λ_2 Are Both Real	
3.1.3	Analogy with the model of a rigid body attached to a spring in a	
frictiona	il environment	63
3.1.4	Shape of Particle Trajectory	64
3.1.5		
3.2	STOCHASTIC CONVERGENCE ANALYSIS OF SIMPLE PSO	72

3.2.1	Convergence Analysis of Expected Value of Particle Position Ex_t	/ 7
3.2.2	Convergence Analysis of Variance of a Particle Position Dx,	76
3.2.3	Convergence of Particles to a Certain Point	81
3.3	EFFECT OF VARYING PSO PARAMETERS ON CONVERGENCE TIME	85
3.3.1	Effect of Convergence Rate of Ex	86
3.3.2	Effect of Convergence Rate of Dx _t	88
3.3.3	Effect of k on the Total Convergence Rate	89
3.3.4	Testing Effect of Variations of PSO Parameters on Number of	
Iteration	s	89
	3.3.4.1 Effect of w Variations	90
	3.3.4.2 Effect of k Variations	92
3.3.5	The Criterion for Parameter Tuning	94
3.3.6	Concluding Remarks	95
4.1	INTRODUCTORY ANALYSIS	98
<i>4</i> 1	INTRODUCTORY ANALYSIS	98
4.1.1	Introductory Analysis in the Normal Incidence Case	
111		101
4.1.1	1 Behavior of the Error Function at Low Frequency Normal Incide.	
4.1.1		nce
	1 Behavior of the Error Function at Low Frequency Normal Incide	nce . 101 ence
	1 Behavior of the Error Function at Low Frequency Normal Incides 2 Behavior of the Error Function at High Frequency Normal Incide	nce . 101 ence 102
4.1.1 4.1.2	1 Behavior of the Error Function at Low Frequency Normal Incides 2 Behavior of the Error Function at High Frequency Normal Incides Introductory Analysis of Oblique Incidence 1 Behavior of the Error Function at Low Frequency Oblique Incidence	nce 101 ence102104 ence.
4.1.1 4.1.2 4.1.1	1 Behavior of the Error Function at Low Frequency Normal Incides 2 Behavior of the Error Function at High Frequency Normal Incides Introductory Analysis of Oblique Incidence	nce 101 ence102104 ence104
4.1.1 4.1.2 4.1.1 4.1.1	1 Behavior of the Error Function at Low Frequency Normal Incides 2 Behavior of the Error Function at High Frequency Normal Incides Introductory Analysis of Oblique Incidence	nce 101 ence102104 ence104 ence105
4.1.1 4.1.2 4.1.1 4.1.1	1 Behavior of the Error Function at Low Frequency Normal Incides 2 Behavior of the Error Function at High Frequency Normal Incides Introductory Analysis of Oblique Incidence 1 Behavior of the Error Function at Low Frequency Oblique Incidence 2 Behavior of the Error Function at High Frequency Oblique Incidence FORWARD PROBLEM CALCULATIONS	nce 101 ence102104 ence104 ence105107
4.1.1 4.1.2 4.1.1 4.1.1 4.2 4.2.1	1 Behavior of the Error Function at Low Frequency Normal Incides 2 Behavior of the Error Function at High Frequency Normal Incides Introductory Analysis of Oblique Incidence 1 Behavior of the Error Function at Low Frequency Oblique Incidence 2 Behavior of the Error Function at High Frequency Oblique Incidence FORWARD PROBLEM CALCULATIONS Forward Problem of the Discrete Multilayer Dielectric Slab	nce 101 ence102104 ence104 ence105107
4.1.1 4.1.2 4.1.1 4.1.1 4.2 4.2.1 4.2.2	1 Behavior of the Error Function at Low Frequency Normal Incides 2 Behavior of the Error Function at High Frequency Normal Incides Introductory Analysis of Oblique Incidence 1 Behavior of the Error Function at Low Frequency Oblique Incidence 2 Behavior of the Error Function at High Frequency Oblique Incidence FORWARD PROBLEM CALCULATIONS	nce 101 ence 102 104 ence 104 ence 105 107 107