EFFECT OF IRRIGATION WITH TREATED WASTEWATER AND SOME AGENTS FOR REMEDIATION OF INJURIOUS IONS ON THE PERFORMANCE OF SOME PLANTS.

BY

BAHAA BADRY MOSA SALIM

B.Sc. Agric. Sc., (Horticulture), Ain Shams University, 2001.

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science

(Plant Physiology)

Department of Agricultural Botany

Faculty of Agriculture

Ain Shams University

2007

Approval Sheet

EFFECT OF IRRIGATION WITH TREATED WASTEWATER AND SOME AGENTS FOR REMEDIATION OF INJURIOUS IONS ON THE PERFORMANCE OF SOME PLANTS

BY

BAHAA BADRY MOSA SALIM

B.Sc. Agric. Sc., (Horticulture), Ain Shams Univ., 2001.

This thesis for M.Sc. degree has been approved by	y:
---	----

Prof. Dr. Hosny M. M. Abd El-Dayem
Prof. of Plant Physiology, Fac. of Agric., Benha University
Prof. Dr. Sami Abd El-Kawi Habib
Prof. Emeritus of Agric. Botany, Fac. of Agric., Ain Shams University
Dr. Sayed Said Shaban Eisa
Associate Prof. of Plant Physiology, Fac. of Agric., Ain Shams University (Supervisor)
Prof. Dr. Mohammad Abd El-Rasoul Mohmmed
Prof. Emeritus of Plant Physiology, Fac. of Agric., Ain Shams

Date of examination: 22/10 / 2007

University (Main supervisor)

EFFECT OF IRRIGATION WITH TREATED WASTEWATER AND SOME AGENTS FOR REMEDIATION OF INJURIOUS IONS ON THE PERFORMANCE OF SOME PLANTS.

BY

BAHAA BADRY MOSA SALIM

B.Sc. Agric. Sc, (Horticulture), Ain Shams University, 2001.

Under the supervision of:

Prof. Dr. Mohammad Abd El-Rasoul Mohammed

Prof. Emeritus of Plant Physiology, Dept. of Agric. Bot., Fac. of Agric., Ain Sham University. (Principal Supervisor)

Dr. Sayed Said Shaban Eisa

Associate Prof. of Plant Physiology, Dept. of Agric. Bot., Fac. of Agric., Ain Shams University

Dr. Ahmed Abou El-Yazaid Abd El-Hafez

Associate Prof. of Vegetable, Dept. of Horti., Fac. of Agric., Ain Shams University

ABSTRACT

Bahaa Badry Mosa Salim. Effect of irrigation with treated wastewater and some agents for remediation of injurious ions on the performance of some plants. Unpublished, Master of Agric. Science, University of Ain-Shams, Fac. of Agric., Dept. of Agric. Botany, 2007

Two field experiments in 15th September 2003 and 2004 were conducted on carrot (root crop) and lettuce (leafy crop) plants in a sandy soil in the experimental farm of El-Gabal El-Asfer at Kalubya Governorate. A number of different soil treatments include *Bacillus subtlis*, calcium super phosphate, SPC at two rates 250 and 500 Kg/fed and soil conditioner (polyacrylamide hydrogel, PAMG) to reduce the hazard effect of some injurious ions. Samples were taken for growth parameters studies and some chemical determination in both plants and seasons.

The results could be summarized in the following:

- 1. A significant increase in plant and storage root fresh weights of carrot for the inoculation with *Bacillus subtlis* were observed as compared to the control. The low rate of SPC (250 Kg/fed) resulted in the highest significantly values of plant fresh weight. A significant increase and decrease was achieved for plant fresh weight and storage root fresh weight respectively as a result of applying the PAMG.
- 2. *Bacillus subtlis* treatment produced a significant increase plant, stem and root fresh weights. Variable trends of growth parameters was found in lettuce plants as a result of SPC treatments. PAMG treatment led to a significant increase of plant length.
- 3. The obtained results indicated that inoculation with *Bacillus subtlis* gave a significant decrease in Ni, Pb and Cd contents in both plants. A significant decrease in Fe content was observed in both plants as a result of the applied SPC₁ and SPC₂ (250 and 500 Kg/fed) while there are variable trend in the other heavy metals contents with the same

treatments. SPC₁ treatment caused a significant decrease in Fe, Cu, Ni and Pb contents. PAMG treatment led to a significant decrease in Mn content and increase in Ni content in both plants. The content of Zn, Ni and Pb in carrot roots were significantly increased while all heavy metals except Ni in lettuce leaves were significantly decrease.

4. The highest and lowest significant values of NO₃⁻ and NO₂⁻ concentrations were given by the PAMG and *Bacillus subtlis* treatments, respectively. Total chlorophylls were increased by all soil treatments and the highest content found by SPC₂.

Key words: Carrot, *Daucus carota*, Lettuce, *Lactuca sativa*, *Bacillus* subtlis, super phosphate, polyacrylamide, wastewater, Heavy metals.

ACKNOWLEDGMENT

I wish to express my gratitude to **Dr. Mohamed Abd El-Rasoul Mohamed** Prof. of Plant Physiology, Dept. of Agric. Botany, Fac. of Agric., Ain Shams Univ. for his supervision, useful suggestions, continuous guidance through the coarse of investigation and precious advice during the progress of this work.

Sincere thanks and gratefulness are extended to **Dr. Ibrahim Seif El-Din Ibrahim Aly** Associate Professor of Plant Physiology, Dept. of Agric. Botany, Fac. of Agric, and Ain Shams University for his supervision, valuable suggestions and sincere encouragement via the first two years of supervision. Also, efforts made during the preparation of the manuscript are greatly appreciated.

Deep thanks are offered to **Dr. Sayed Said Shaban Eisa** Associate Professor of Plant Physiology, Dept. of Agric. Botany, Fac. of Agric. Ain Shams University, for his supervision and kind remarks following up the stages of laboratory work and efforts in writing.

Sincere appreciation is due to **Dr. Ahmed Abou El-Yazid Abd El-Hafez** Associate Professor of Vegetables, Dept. of Horticulture, Fac. of Agric., and Ain Shams University.

Many thanks are offered to the **Engineer/ Mohamed Ahmed Abd El rahman a** Head of the General State of Wastewater and all members in Cairo and El gabal El Asfer Farm.

Thanks are also extended to all members of Agric. Botany Dept. at Fac. of Agric., Ain Shams Univ. for their kindness, cooperation and help that made such work possible.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	VI
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. Effect of irrigation with wastewater on the growth, yield,	
nutrients and the accumulation of some injurious ions (heavy	
metals, nitrate and nitrite) of some vegetable crops	3
2. Effect of some soil treatments on the growth, yield, nutrients	
and the accumulation of some heavy metals of some vegetable	
crops	9
2. 1. Effect of biotreatment (<i>Bacillus subtils</i>)	9
2. 2. Effect of super phosphate calcium (SPC)	10
3. 2. Effect of soil conditioners	11
III. MATERIALS AND METHODS	13
1. Soil and treated wastewater analyses	13
2. Soil treatments	14
3. Growth parameters	18
4. Chemical analyses	18
4. 1. Heavy metals assay	18
4. 2. Determination of nitrate and nitrite concentrations	18
4. 3. Total chlorophylls assay	19
IV. RESULTS AND DISCUSSION	20
1. Effect of soil treatments on growth and yield of carrot and	
lettuce under irrigation by treated wastewater	20
1. 1. Carrot	20
1. 2. Lettuce	31
2. Effect of soil treatments on heavy metals concentrations of	
carrot roots and lettuce leaves under irrigation by treated	
wastewater	41
2. 1. Carrot	41

2. 2. Lettuce	64
3. Effect of soil treatments on nitrate and nitrite concentration of	
carrot and lettuce under irrigation by treated wastewater	65
3.1. Carrot	65
3.2. Lettuce	66
4. Effect of soil treatments on total chlorophylls of lettuce under	
irrigation by treated wastewater	75
V. SUMMARY AND CONCLUSION	76
VI. REFERENCES	79
ARABIC SUMMARY	

LIST OF TABLES

No		Page
a.	Some physical and chemical analysis of the soil	
	samples collected from El-Gabal El-Asfer farm before	
	and after curing soil by treatments	14
b.	Some physical and chemical characteristics of	
	wastewater samples collected from El-Gabal El-Asfer	
	station	16
1	Effect of Bacillus subtlis (BS) as a soil treatment on	
	some growth parameters of carrot in both seasons	
	under treated wastewater	
	irrigation	21
2	Effect of super phosphate calcium, (SPC) as a soil	
	treatment on some growth parameters of carrot in both	
	seasons under treated wastewater irrigation	22
3	Effect of polyacrylamide hydrogel, (PAMG) as a soil	
	treatment on some growth parameters of carrot in both	
	seasons under treated wastewater irrigation	27
4	Effect of Bacillus subtlis as a soil treatment on some	
	growth parameters of lettuce in both seasons under	
	treated wastewater irrigation	28
5	Effect of super phosphate calcium, (SPC) as a soil	
	treatment on some growth parameters of lettuce in	
	both seasons under treated wastewater irrigation	34
6	Effect of polyacrylamide hydrogel, (PAMG) as a soil	
	treatment on some growth parameters of lettuce in	
	both seasons under treated wastewater irrigation	36
7	Effect of Bacillus subtlis as a soil treatment on heavy	
	metals concentration (ppm) of carrot roots in both	
	seasons at harvest under treated wastewater irrigation	42

ð	treatment on heavy metals concentration (npm) of	
	treatment on heavy metals concentration (ppm) of	
	carrot roots in both seasons at harvest under treated	
0	wastewater irrigation.	
9	Effect of polyacrylamide hydrogel, (PAMG) as a soil	
	treatment on heavy metals concentration (ppm) of	
	carrot roots in both seasons at harvest under treated	
10	wastewater irrigation	
10	Effect of <i>Bacillus subtlis</i> as a soil treatment on heavy	
	metals concentration (ppm) of lettuce leaves in both	
	seasons at harvest under treated wastewater irrigation	
11	Effect of super phosphate calcium, (SPC) as a soil	
	treatment on heavy metals concentration (ppm) of	
	lettuce leaves in both seasons at harvest under treated	
	wastewater irrigation	
12	. Effect of polyacrylamide hydrogel, (PAMG) as a soil	
	treatment on heavy metals concentration (ppm) of	
	lettuce leaves in both seasons at harvest under treated	
	wastewater irrigation	
13	Effect of <i>Bacillus subtlis</i> as a soil treatment on nitrate	
	and nitrite concentration (ppm) of carrot roots in both	
	seasons at harvest under treated wastewater irrigation	
14	Effect of super phosphate calcium, (SPC) as a soil	
	treatment on nitrate and nitrite concentration (ppm) of	
	carrot roots in both seasons at harvest under treated	
	wastewater irrigation	
15	Effect of polyacrylamide hydrogel, (PAMG) as a soil	
	treatment on nitrate and nitrite concentration (ppm) of	
	carrot roots in both seasons at harvest under treated	
	wastewater irrigation	
16	Effect of <i>Bacillus subtlis</i> as a soil treatment on	
	nitrate and nitrite concentration (ppm) of lettuce leaves in both seasons at harvest under treated	
	wastewater	
	irrigation	
	$\boldsymbol{\varepsilon}$	

17	Effect of super phosphate calcium, (SPC) as a soil	
	treatment on nitrate and nitrite concentration (ppm) of	
	lettuce leaves in both seasons at harvest under treated	
	wastewater irrigation	70
18	Effect of polyacrylamide hydrogel, (PAMG) as a soil	
	treatment on nitrate and nitrite concentration (ppm) of	
	lettuce leaves in both seasons at harvest under treated	
	wastewater irrigation	70
19	Effect of some soil treatments on total chlorophylls	
	(SPAD) of lettuce leaves in both seasons at harvest	
	under treated wastewater irrigation	73

LIST OF FIGURES

No		Page
1.1.	Effect of Bacillus subtlis as a soil treatment on	O
	plant length (cm) of carrot in both seasons under	
	treated wastewater irrigation	23
1.2.	Effect of Bacillus subtlis as a soil treatment on	
	number of leaves/plant of carrot in both seasons	
	under treated wastewater irrigation	23
1.3.	Effect of Bacillus subtlis as a soil treatment on	
	plant fresh weight (g) of carrot in both seasons	
	under treated wastewater irrigation	23
1.4.	Effect of Bacillus subtlis as a soil treatment on	
	plant dry weight (g) of carrot in both seasons	
	under treated wastewater irrigation	23
1.5.	Effect of <i>Bacillus subtlis</i> as a soil treatment on	
	storage root length (cm) of carrot in both seasons	
	under treated wastewater irrigation	24
1.6.	Effect of <i>Bacillus subtlis</i> as a soil treatment on	27
	storage root thickness (cm) of carrot in both	2.4
1.7.	seasons under treated wastewater irrigation	24
1./.	Effect of Bacillus subtlis as a soil treatment on	
	storage root fresh weight (g) of carrot in both	
	seasons under treated wastewater irrigation	24
1.8.	Effect of Bacillus subtlis as a soil treatment on	
	storage root fresh weight (g) of carrot in both	
	seasons under treated wastewater irrigation	24

2.1.	Effect of super phosphate calcium, SPC as a soil	
	treatment on plant length (cm) of carrot in both	
	seasons under treated wastewater irrigation	25
2.2.	Effect of super phosphate calcium, SPC as a soil	
	treatment on number of leaves/plant of carrot in	
	both seasons under treated wastewater irrigation.	25
2.3.	Effect of super phosphate calcium, SPC as a soil	
	treatment on plant fresh weight (g) of carrot in both	
	seasons under treated wastewater irrigation.	25
2.4.	Effect of super phosphate calcium, SPC as a soil	
	treatment on plant dry weight (g) of carrot in both	
	seasons under treated wastewater irrigation	25
2.5.	Effect of super phosphate calcium, SPC as a soil	
	treatment on storage root length (cm) of carrot in	
	both seasons under treated wastewater irrigation	28
2.6.	Effect of super phosphate calcium, SPC as a soil	
	treatment on storage root thickness (cm) of carrot in	
	both seasons under treated wastewater irrigation	
		28
2.7.	Effect of super phosphate calcium, SPC as a soil	
	treatment on storage root fresh weight (g) of carrot	
	in both seasons under treated wastewater irrigation	
		28
2.8.	Effect of super phosphate calcium, SPC as a soil	
	treatment on storage root dry weight (g) of carrot in	
	both seasons under treated wastewater irrigation	
2.1		28
3.1.	Effect of polyacrylamide hydrogel, PAMG as a soil	29
	treatment on plant length (cm) of carrot in both	
	seasons under treated wastewater irrigation.	

3.2.	Effect of polyacrylamide hydrogel, PAMG as a soil treatment on number of leaves/plant of carrot in both seasons under treated wastewater irrigation	29
3.3.	Effect of polyacrylamide hydrogel, PAMG as a soil	25
	treatment on plant fresh weight (g) of carrot in both	
3.4.	seasons under treated wastewater irrigation Effect of polyacrylamide hydrogel, PAMG as a soil treatment on plant dry weight (g) of carrot in	29
	both seasons under treated wastewater irrigation	29
3.5.	Effect of polyacrylamide hydrogel, PAMG as a	29
	soil treatment on storage root length (cm) of carrot in both seasons under treated wastewater irrigation	20
3.6.	Ç	30
2.0.	Effect of polyacrylamide hydrogel, PAMG as a soil treatment on storage root thickness (cm) of	
	carrot in both seasons under treated wastewater	
	irrigation	30
3.7.	Effect of polyacrylamide hydrogel, PAMG as a	
	soil treatment on storage root fresh weight (g) of	
	carrot in both seasons under treated wastewater	
• •	irrigation	30
3.8.	Effect of polyacrylamide hydrogel, PAMG as a	
	soil treatment on storage root dry weight (g) of	
	carrot in both seasons under treated wastewater	
4.1	irrigation	30
4.1.	Effect of Bacillus subtlis as a soil treatment on	
	plant length (cm) of lettuce in both seasons under	
	treated wastewater irrigation	32

4.2.	Effect of Bacillus subtlis as a soil treatment on	
	number of leaves / plant of lettuce in both seasons	
	under treated wastewater irrigation	32
4.3.	Effect of Bacillus subtlis as a soil treatment on	
	leaf length (cm) of lettuce in both seasons under	
	treated wastewater irrigation	32
4.4.	Effect of Bacillus subtlis as a soil treatment on	
	plant fresh weight (g) of lettuce in both seasons	
	under treated wastewater irrigation	32
4.5.	Effect of Bacillus subtlis as a soil treatment on	
	leaves fresh weight / plant (g) of lettuce in both	
	seasons under treated wastewater irrigation	33
4.6.	Effect of Bacillus subtlis as a soil treatment on	
	stem fresh weight (g) of lettuce in both seasons	
	under treated wastewater irrigation	33
4.7.	Effect of Bacillus subtlis as a soil treatment on	
	root fresh weight (g) of lettuce in both seasons	
	under treated wastewater irrigation	33
4.8.	Effect of Bacillus subtlis as a soil treatment on	
	root dry weight (g) of lettuce in the first season	
	under treated wastewater irrigation	33
5.1.	Effect of super phosphate calcium, SPC as a soil	
	treatment on plant length (cm) of lettuce in both	
	seasons under treated wastewater	
	irrigation	36
5.2.	Effect of super phosphate calcium, SPC as a soil	
	treatment on number of leaves / plant of lettuce in	
	both seasons under treated wastewater irrigation .	36
5.3.	Effect of super phosphate calcium, SPC as a soil	
	treatment on leaf length (cm) of lettuce in both	
	seasons under treated wastewater irrigation	36