Introduction

INTRODUCTION

Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Acute postoperative pain management is not only a human feeling, but it is a key aspect of postoperative care, as acute pain, regardless of its site, can adversely affect nearly every organ function, and so affects the postoperative morbidity and mortality (Morgan et al., 2006).

The stress response to surgery, anesthesia and other injuries has been considered as the homeostatic defense mechanism, important for the body for adaptation and developing resistance to the noxious insults. But such exaggerated physiological changes in patients especially if associated with coexisting diseases may be life threatening (Manorama, 2003).

General anesthesia does not abolish the stress response completely. The local anesthetics when used intrathecally or epidurally, abolishes the response to a great extent, particularly in lower abdominal operations (Manorama, 2003).

Regional anesthesia is also influence the early indicators of recovery such as time to consciousness, the incidence of postoperative nausea and vomiting (PONV), return of full cognitive function, these benefits may occur purely as a result of avoiding opioids, also with using regional anesthesia, the quality of analgesia and time to first supplementary analgesic is significantly better than that with systemic opioids (**Dalens and Hasnaoui, 1989**).

Bupivacaine has been in clinical use for more than 30 years. It is widely used for spinal anesthesia but it is associated with a number of side effects, including motor weakness,

Introduction 2

cardiovascular and central nervous system toxicity. This has resulted in the continuing search for new and safer local anesthetic agents (**De Beer and Thomas, 2003**).

Ropivacaine (1-propyl 2`6`-pipecoloxylidide hydrochloride monohydrate) is the s-enantiomer of a new amide local anesthetic which has been extensively evaluated in adults and older children (McClure, 1996). Recently, it has been used in adults and several studies have reported its clinical efficacy and safety when administered for spinal anesthesia (Habre et al, 2000).

Ropivacaine has several properties which may be useful in practice, namely the potential to produce differential neural blockade with less motor block and reduced cardiovascular and neurological toxicity (McClure, 1996).

The potency of Ropivacaine in terms of sensory block has now been determined in clicical use, whether for infiltration anesthesia, peripheral nerve block, brachial plexus block, spinal block and lumber extradural block showed that ropivacaine was a long acting local anesthetic which gave surgical anesthesia of good quality (Gautier et al., 1999).

The current study was designed to compare the clinical efficacy of hyperbaric solution of ropivacaine with that of commercially available preparation of hyperbaric bupivacaine in spinal anesthesia in TURP.

INTRATHECAL HYPERBARIC ROPIVACAINE VERSUS BUPIVACAINE IN TURP-

COMPARITIVE STUDY

Thesis Submitted for Partial Fulfillment of the M.D. Degree in Anesthesiology

 \mathbf{BY}

Mahmoud Ahmed Abd El Hakeem Galal M.B.B.Ch., M.Sc. Ain Shams University

Supervised By

Professor Doctor Medhat Mohamed Mohamed Younis Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Professor Doctor Azza Youssef Ibrahim Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Professor Doctor Bassem Boulos Ghobrial Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Doctor Ahmed Mohamed Khamis Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University *** 2007 ***

Acknowledgment

First & foremost I thank **Allah** the most beneficial & merciful for fulfillment of this work.

I would like to express my sincere gratitude to Professor Dr **Medhat Mohamed Mohamed Younis**, professor of Anesthesia & Intensive care, Faculty of Medicine, Ain Shams University, who honored me by his great support and his kind supervision. It is really a great honor to work under his guidance.

I am greatly indebted to professor Dr **Azza Youssef Ibrahim**, professor of Anesthesia & intensive care, Faculty of Medicine , Ain Shams University. For her continuous encouragement, support and giving a great deal of her valuable time in revising every item in this work.

I would like to express my deepest thanks to professor Dr **Bassem Boulos Ghobrial**, professor of Anesthesia & intensive care, Faculty of Medicine, Ain Shams University. Who was very generous in his time & effort.

I wish to express my deepest thanks to Dr **Ahmed Mohamed Khamis**, Lecturer of Anesthesia & intensive care, Faculty of Medicine Ain Shams University. Who was very helpful in management of this work and for hers keen perceptions, continuous help support, and meticulous guidance throughout this work.

Finally, I thank my father who, throughout my life, have been and still is ever ready to assist me in my various endeavors, for which I am truly grateful. Also I thank my wife who bears a lot pain just for me, never to forget my mother, the source of light.

Mahmoud Abd El-Hakeem

دراسة مقارنة بين عقار الروبيفاكين عالي الكثافة و عقار البيوبيفاكين عن طريق التخدير تحت الأم العنكبوتية أثناء عمليات استئصال البروستاتا عن طريق

توطنة للحصول على درجة الدكتوراه في التخدير

الطبيب/محمود أحمد عبد الحكيم جلال بكالوريوس الطب و الجراحة كلية الطب عبد عين شمس ماجستير التخدير - كلية الطب - جامعة عين شمس

الاستاذ الدكتور/مدحت محمد محمد يونس استاذ التخدير و الرعاية المركزة جامعة عين شمس-كلية الطب

الاستاذ الدكتور/عزة يوسف ابراهيم استاذ التخدير و الرعاية المركزة جامعة عين شمس /كلية الطب

الاستاذ الدكتور/باسم بولس غبريال استاذ التخدير و الرعاية المركزة جامعة عين شمس كلية الطب

الدكتور/أحمد محمد خميس مدرس التخدير و الرعاية المركزة جامعة عين شمس-كلية الطب

> كلية الطب جامعة عين شمس 2005

List of Contents

		Page
•	Introduction	1
•	Aim of the Work	3
•	Review of Literature	
	Chapter (1): Pain	4
	Chapter (2): Spinal cord	24
	Chapter (3): Local anesthestics	44
•	Patients and Methods	63
•	Results	75
•	Discussion	91
•	Conclusion and Recommendations	105
•	Summary	106
•	References	109
•	Arabic Summary	130

List of abbreviations

Aa	A alpha fibers
AAG	Alpha-1-acid glycoprotin
Ab	A beta fibers
Ad	A delta fibers
ANS	Autonomic nervous system
ASA	American society of Anesthesiologists
BB	Beta blocker
Bz	Benzodiazepine
С	Cervical vertebra
°C	Celesius
CCB	Calcium channel blocker
CNS	Central nervous system
CO2	Carbon dioxide
COP	Cardiacoutput
CPR	Cardio pulmonary resuscitation
CSF	Cerebrospinal fluid
CVS	Cardiovascular system
CVP	Central venous pressure
DRG	Dorsal root ganglion
EAA	Excitatory amino acid
ECG	Electrocardiogram
°F	Fahrenheit
F value	Fisher value
GA	General anesthesia
GABA	Gamma amino butyric acid
H2O	Water
HOCM	Hypertrophic obstructive cardiomyopathy
HR	Heart rate
ICP	Intracranial pressure
Kg	Kilogram
KA	Kainate
L	Lumber vertebra
LAs	Local anesthetics
LC	Locus coeruleus
LT	Low threshold

MBP	Mean blood pressure
mcg	Microgram
mg	Milligram
MI	Myocardial infarction
ml	Milliliter
mm	Millimeter
MRI	Magnetic resonance image
min	Minuets
n	number
NE	Norepinphrine
NMDA	N-methyl-D-aspartate
NS	Noxious stimuli
NSAID	Non steroidal anti inflammatory drugs
NRS	Nucleus raphe magnus
O2	Oxygen
PAG	Periaqueductal
PaCO2	Arterial carbon dioxide tension
PDPh	Post dural puncture headache
PO2	Oxygen tension
P value	Probability value
R	Racemic
RR	Respiratory rate
S	Sacral vertebra
SBP	Systolic blood pressure
SpO2	Oxygen saturation
T	Thoracic vertebra
TNS	Transient neurological symptoms
TRI	Transient radicular irritation
WDR	Wide dynamic range
WBC	White blood cells

List of figures

Figure	Page	2
Fig. (1):	Dorsal root ganglion7	
Fig. (2):	Peripheral sensitization8	
Fig. (3):	Dorsal horn laminae9	
Fig. (4):	Projections of nociceptive progression10	
Fig. (5):	Original gate control theory12	
Fig. (6):	Supraspinal modulation of pain15	
Fig. (7): Fig. (8):	GABA receptor from the extracellular space	
Fig. (9):	complex	
Fig. (10):	Human spinal column	
Fig. (11):	Lumbar lordosis and thoracic kyphosis and the effect on spinal anesthesia	
Fig. (12):	The relationship between peak block height and change in systolic blood pressure (SBP) during spinal anesthesia	
Fig. (13):	The incidence of postdural puncture headache with age changes39	
Fig. (14):	Chemical structure of bupivacaine	
Fig. (15):	Chemical structure of ropivacaine	
Fig. (16): Fig. (17):	Optical isomers of ropivacaine	7
Fig. (18):	Comparesion of density of motor block for the two	

Fig. (19):	Comparison of total duration of motor block	80
Fig. (20):	Comparison between time to maximum degree of motor block (min) for the tow groups	81
Fig. (21):	Comparison between significant hypotension and significant bradycardia between the tow groups	83
Fig. (22):	Comparison between heart rate at and after induction	84
Fig. (23):	Comparison between systolic blood pressure at and after induction	85
Fig. (24):	Comparison between the tow groups as regards heart rate at and after transfere to the recovery room.	86
Fig. (25):	Comparison between the tow groups as regards arterial O_2 saturation (%) pre,intra and post-operative	88

List of Tables

Table	Page
Table (1):	Classification of peripheral nerves according to fiber size and physiologic properties
Table (2):	Classification of opioid receptors 17
Table (3):	Physical properties of lignocaine, ropivacaine and bupivacaine
Table (4):	Pharmacokinetics of local anesthetics 54
Table (5):	Pharmacokinetics of ropivacaine 56
Table (6):	Preoperative physical status classification of patients according to the (A.S.A)
Table (7):	Patients' demographic data
Table (8):	Comparison between sensory block for the tow
T 11 (0)	groups
Table (9):	Comparison between density of motor block 79
Table (10):	Comparison between total duration of motor block for the tow groups
Table (11):	Comparison between time to maximum degree of motor block
Table (12):	Comparison between significant hypotension and significant bradycardia82
Table (13):	Comparison between heart rate at and after induction83
Table (14):	Comparison between systolic blood pressure at
Table (15):	and after induction
Table (16):	Comparison between the tow groups as regards heart rate at and after transfere to the recovery room86

Table (17):	Comparison between the tow groups as regards systolic blood pressure at and after transfere to the recovery room
Table (18):	Comparison between the tow groups as regards arterial O ₂ saturation (%) pre,intra and post-operative 88
Table (19):	comparison between the two groups as regards safety profile

List of Contents

		Page
•	Introduction	1
•	Aim of the Work	3
•	Review of Literature	
	Chapter (1): Physiology of Pain	4
	Chapter (2): Stress Response and anesthesia	17
	Chapter (3): Pediatric neuraxial anesthesia	35
	Chapter (4): Local anesthestics (bupivacain)	57
•	Patients and Methods	78
•	Results	89
•	Discussion	112
•	Conclusion and Recommendations	132
•	Summary	133
•	References	136
•	Arabic Summary	153

Aim of the Work 3

AIM OF THE WORK

This study was designed to compare between intrathecal hyperbaric ropivacaine (0.5% in glucose 10%) and Intrathecal hyperbaric bupivacaine in TURP as regards onset, duration, extent of motor and sensory blocks.

Also to compare hemodynamic changes (heart rate and blood pressure) intra-operatively and post-operatively, and to compare post operative complications (headache, backache and transient neurological symptoms).

Review 4

CHAPTER (1)

PAIN

PHYSIOLOGY OF PAIN

A detailed understanding of sensory perception and the experience of pain is fundamental to the practice of anesthesia. The discipline developed from a need to suppress or abolish the processing of noxious sensory input and the perception of pain during surgical procedures. Anesthesia has flourished and evolved to encompass the management of pain itself in many settings.

Definition of pain

Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. The perception of pain and its threshold are the result of complex interactions between sensory, emotional, and behavioral factors. (Al-Chaer and Traub, 2002)

Somato-sensation refers to the physiologic process by which sensory neurons are activated by physical stimuli resulting in the perception of what we describe as, for example, touch, pressure or pain.

Nociception refers to the physiologic process of activation of specialized neural pathways, especially by tissue-damaging or potentially tissue-damaging stimuli.

Pain, in contrast to nociception, is a conscious experience, and although the stimulus induced activation of afferent neural pathways, other factors may influence the overall perception of pain. These factors may include the alterations in somato-sensory processing following injury to tissues and/or nerves as well as psychosocial factors (**Raja and Dougherty, 1999**).