MODULATION OF THE ANTIOXIDANT DEFENSES IN DIFFERENT DEVELOPMENTAL STAGES OF S. mansoni BY PRAZIQUANTEL AND ARTEMETHER

Thesis

Submitted to Faculty of Pharmacy
University of Alexandria
In partial fulfillment of the requirements
of the degree of
MASTER OF PHARMACEUTICAL SCIENCES
(PHARMACOLOGY)

By

Hoda Saad Eldeen Hussein
Bachelor of pharmaceutical science
1999

Faculty of Pharmacy
University of Alexandria
2005

Supervisors

Emeritus Prof. Dr. Emad Eldeen Abdel Hamid El-Bassiouni

Professor of Pharmacology Medical Research Institute University of Alexandria

Emeritus Prof. Dr. Madiha Hassan Helmy

Professor of Biochemistry Medical Research Institute University of Alexandria

Dr. Evan Ibrahim Saad

Assistant Professor of Pharmacology Faculty of Pharmacy University of Alexandria

Dr. Elham Abdel-Meguid

Assistant Professor of Pharmacology Medical Research Institute University of Alexandria

Acknowledgement

I humbly thank the Almighty God, greatest of all, for giving me the ability and effort to perform this work

It is a great pleasure to express my deepest gratitude and indebtedness to **Prof. Dr. Emad A. El-Bassiouni**, Professor of Pharmacology, Medical research Institute, University of Alexandria, for suggesting the research problem, designing the work and for his great supervision, immense help throughout the course of this work. Also, his continuous encouragement, advice and criticism, and great effort and long time he invested in this study are appreciated. I deeply express my appreciation and thanks to him.

It is with great pleasure, deep satisfaction and gratitude that I acknowledge the supervision and help of **Prof. Dr. Madiha Hassan Helmy**, Professor of Biochemistry, Medical research Institute, Alexandria University and I would like to express my deep appreciation and sincere thanks for her unlimited effort, unending cooperation and her supervision. I am also indebted to her for her generosity with her time, effort and materials required during this investigation.

It is a great pleasure to express my deepest gratitude and indebtedness to. **Dr. Evan Ibrahim Saad**, Assistant Professor of Pharmacology, Faculty of Pharmacy, University of Alexandria, as a supervisor who patiently devoted much of her precious time for completing this work and for her continuous encouragement, great effort, wise advice, and sincere support.

I wish to express my deepest thanks and gratitude to **Dr. Elham Abdel-Meguid**, Assistant Professor of Pharmacology, Medical research Institute, University of Alexandria, for her kind help, continuous encouragement, and wise advice for completing this work.

Also, I am greatly indebted to Dr. **Maher Abdel-Nabi Kamel**, Lecturer of Biochemistry, Medical research Institute, Alexandria University, for his kind help and for the time he spent in this study.

Also, I am grateful to **Prof. Dr. Achille Benakis** for kindly supplying the artemether used in the present work. His generosity is greatly appreciated.

I would like to express my deepest gratitude and appreciation to all those who made this work possible.

I wish to extend my thanks to each member in my family for all their help, support, encouragement and patience.

Table of contents

Chapter		Pa
I-	Introduction	1
	Artemisinin derivatives	3
	-Pharmacokinetics	4
	-Laboratories studies and clinical trials with artemether	
	on Schistosoma mansoni	5
	-Mechanism of action	6
	-Morphological alterations of <i>Schistosoma</i> worm	
	induced by artemether	7
	-Adverse effects and potential long-term toxicity of	
	artemether	8
	-Other indications for artemether use	Ç
	Praziquantel	Ç
	-Pharmacokinetics	1
	-Morphological alterations induced by praziquantel	1
	-Metabolic changes	1
	-Mechanism of action	1
	-Side effects and toxicity	1
	-Resistance	1
	-Other indications for praziquantel use	1
	Combined treatment of praziquantel and artemether	1
	Free radicals	1
	-Generation of free radicals	1
	-Types of free radicals	1
	-Intracellular production of free radicals	1
	-Physiological functions of free radicals	2
	-Oxidative stress	2
	-Damaging reactions of free radicals	2
	-Defenses against free radicals	2
	-Defenses against free radicals in schistosomes	2
	Glutathione	2
	Glutathione peroxidases	2
	Glutathione reductases	2
	Glutathione-S-transferases	3
	Superoxide dismutases	3
II-	Aim of the work	3

Chapter		Page
III-	Material and methods	34
	Exposure of worms to artemether and praziquantel	34
	Viability test Determination of concentration of reduced glutathione	35
	(GSH) Determination of thiobarbituric acid reactive substances	36
	(TBARS)	38
	Determination of superoxide dismutase (SOD)	39
	Determination of glutathione peroxidase activity (GPx) Determination of the activity of glutathione-S-	43
	transferase (GST) Determination of the activity of glutathione reductase	46
	(GR)	47
	Determination of total protein	48
	Statistical analysis	52
IV-	Results	54
	reduced glutathione (GSH)	54
	2. Changes in lipid peroxidation	62
	3. Changes in superoxide dismutase (SOD) activity	73
	4. Changes in glutathione peroxidase (tGPx) activity	79
	5. Changes in glutathione-S-transferase (GST) activity	106
	6. Changes in glutathione reductase (GR) activity	111
V-	Discussion	128
VI-	Summary and conclusion	141
VII-	References	146
VIII-	Arabic summary	

List of abbreviations

ART : Artemether.

ATPase : Adenosine triphosphatase.

C_{max}: Peak plasma concentration.

'CCl₃ : Trichloromethyl radical.

CCl₄ : Carbon tetrachloride.

CDNB : 1-chloro-2,4-dinitrobenzene.

cGPx : Cytosolic and mitochondrial glutathione

peroxidase.

CNS : Central nervous system.

CT-SOD : Cytosolic superoxide dismutase.

DNA : Deoxyribonucleic acid.

DTNB : 5,5-dithiobis-(2-nitrobenzoic acid).

DTPA : Diethylenetriaminepentaacetic acid.

EC-SOD : Extracellular superoxide dismutase.

EDTA : Ethylenediaminetetraacetic acid.

GPx : Glutathione peroxidase.

GSH : Glutathione reduced form.

GSSG : Glutathione oxidized form.

GR : Glutathione reductase.

GST : Glutathione-S- transferase.

GSTO 1-1 : Glutathione-S- transferase omega.

H₂O₂ : Hydrogen peroxide.

h : Hour.

HOCl : Hypochlorous acid.

LOO': Lipoperoxy radical.

LOOH : Lipid hydroperoxide.

M : Molar concentration.

MDA : Malondialdehyde.

mRNA : Messenger ribonucleic acid.

NAD(P)⁺ : Nicotinamide adenine dinucleotide phosphate

oxidized form.

NAD(P)H : Nicotinamide adenine dinucleotide phosphate

reduced form.

NO : Nitric oxide.

nsGPx : Non-selenium-dependent glutathione peroxidase.

¹O₂ : Singlet-state molecular oxygen.

³O₂ : Triplet-state molecular oxygen.

O₂: Superoxide radical.

OH : Hydroxy radical.

ONOO : Peroxynitrite radical.

PBS : Phosphate-buffered saline.

PHGPx : Phospholipid hydroperoxide glutathione

peroxidase.

PUFA : Poly unsaturated fatty acid.

PZQ : Praziquantel.

ROOH : Peroxides.

ROS : Reactive oxygen species.

S. haematobium : Schistosoma haematobium.

S. japonicum : Schistosoma japonicum.

S. mansoni : Schistosoma mansoni.

sGPx : Selenium-dependent glutathione peroxidase.

SP-SOD : Signal peptide-containing Cu/Zn superoxide

dismutase.

SDS : Sodium dodecylsulfate.

SOD : Superoxide dismutase.

 $t_{\frac{1}{2}}$: Terminal half life.

 t_{max} : The time required to reach the peak plasma

concentration.

TBA : Thiobarbituric acid.

TBARS : Thiobarbituric acid reactive substances.

TMP : Tetramethoxypropane.

TNB : 5-thio-2-nitrobenzoic acid.

UV : Ultraviolet.

List of Figures

Figure No.		page
1-	Chemical structure of artemether	4
2-	Standard curve of reduced glutathione (GSH)	37
3-	Standard curve of malondialdehyde (MDA)	40
4-	Standard curve of superoxide dismutase (SOD)	41
5-	Standard curve of glutathione reductase (GR)	49
6-	Standard curve of total protein	50
7-	Changes in concentration of reduced glutathione following incubation of immature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours	
8-	Correlation between the concentration of artemether and the percentage decrease in reduced glutathione concentration following 1 hour and 3 hours incubation of immature <i>S. mansoni</i> worms	
9-	Changes in concentration of reduced glutathione following incubation of mature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours	
10-	Correlation between the concentration of artemether and the percentage decrease in reduced glutathione concentration following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms	
11-	Changes in concentration of reduced glutathione following incubation of immature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml praziquantel for 1 and 3 hours	

Figure No.		page
12-	Correlation between the concentration of praziquantel and the percentage decrease in reduced glutathione concentration following 1 hour, and 3 hours incubation of immature <i>S. mansoni</i> worms.	61
13-	Changes in concentration of reduced glutathione following incubation of mature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml praziquantel for 1 and 3 hours	64
14-	Correlation between the concentration of praziquantel and the percentage decrease in reduced glutathione concentration following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms	64
15-	Changes in concentration of TBARS following incubation of immature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours	66
16-	Correlation between the concentration of artemether and the percentage increase in TBARS concentration following 1 hour, and 3 hours incubation of immature <i>S. mansoni</i> worms.	66
17-	Changes in concentration of TBARS following incubation of mature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours.	68
18-	Correlation between the concentration of artemether and the percentage increase in TBARS concentration following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms.	68
19-	Changes in concentration of TBARS with time following incubation of mature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml praziquantel	72

Figure No.		page
20-	Correlation between the concentration of praziquantel and the percentage increase in TBARS concentration following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms.	72
21-	Changes in activity of SOD with time following incubation of immature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether	75
22-	Correlation between the concentration of artemether and the percentage increase in SOD activity following 1 hour, and 3 hours incubation of immature <i>S. mansoni</i> worms	75
23-	Changes in activity of SOD with time following incubation of mature <i>S. mansoni</i> worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether	77
24-	Correlation between the concentration of artemether and praziquantel and the percentage increase in SOD activity following 1 hour incubation of immature <i>S. mansoni</i> worms	81
25-	Correlation between the concentration of artemether and praziquantel and the percentage increase in SOD activity following 3 hours incubation of immature <i>S. mansoni</i> worms.	81
26-	Correlation between the concentration of artemether and praziquantel and the percentage increase in SOD activity following 1 hour incubation of mature <i>S. mansoni</i> worms.	82
27-	Correlation between the concentration of artemether and praziquantel and the percentage increase in SOD activity following 3 hours incubation of mature <i>S. mansoni</i> worms.	82
28-	Changes in activity of tGPx with time following incubation of immature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether	84

Figure No.		page
29-	Changes in activity of tGPx with time following incubation of mature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether	84
30-	Correlation between the concentration of artemether and the percentage increase in tGPx activity following 1 hour, and 3 hours incubation of immature <i>S. mansoni</i> worms	87
31-	Correlation between the concentration of artemether and the percentage increase in tGPx activity following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms	87
32-	Correlation between the concentration of artemether and praziquantel and the percentage increase in tGPx activity following 1 hour incubation of immature <i>S. mansoni</i> worms.	90
33-	Correlation between the concentration of artemether and praziquantel and the percentage increase in tGPx activity following 3 hours incubation of immature <i>S. mansoni</i> worms.	90
34-	Correlation between the concentration of artemether and praziquantel and the percentage increase in tGPx activity following 1 hour incubation of mature <i>S. mansoni</i> worms.	91
35-	Correlation between the concentration of artemether and praziquantel and the percentage increase in tGPx activity following 3 hours incubation of mature <i>S. mansoni</i> worms.	91
36-	Changes in activity of nsGPx following incubation of immature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours.	98
37-	Changes in activity of nsGPx following incubation of mature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours.	98

Figure No.		page
38-	Correlation between the concentration of artemether and the percentage increase in nsGPx activity following 1 hour, and 3 hours incubation of immature <i>S. mansoni</i> worms	101
39-	Correlation between the concentration of artemether and the percentage increase in nsGPx activity following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms.	101
40-	Correlation between the concentration of artemether and praziquantel and the percentage increase in nsGPx activity following 1 hour incubation of immature <i>S. mansoni</i> worms.	104
41-	Correlation between the concentration of artemether and praziquantel and the percentage increase in nsGPx activity following 3 hours incubation of immature <i>S. mansoni</i> worms.	104
42-	Correlation between the concentration of artemether and praziquantel and the percentage increase in nsGPx activity following 1 hour incubation of mature <i>S. mansoni</i> worms	105
43-	Correlation between the concentration of artemether and praziquantel and the percentage increase in nsGPx activity following 3 hour incubation of mature <i>S. mansoni</i> worms.	105
44-	Changes in activity of GST following incubation of immature <i>S. mansoni</i> worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours.	108
45-	Correlation between the concentration of artemether and the percentage increase in GST activity following 1 hour, and 3 hours incubation of immature <i>S. mansoni</i> worms	108
46-	Changes in activity of GST following incubation of mature <i>S. mansoni</i> worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng/ml artemether for 1 and 3 hours	110

Figure No.		page
47-	Correlation between the concentration of artemether and the percentage increase in GST activity following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms	110
48-	Correlation between the concentration of artemether and praziquantel and the percentage increase in GST activity following 1 hour incubation of immature <i>S. mansoni</i> worms	114
49-	Correlation between the concentration of artemether and praziquantel and the percentage increase in GST activity following 3 hours incubation of immature <i>S. mansoni</i> worms.	114
50-	Correlation between the concentration of artemether and praziquantel and the percentage increase in GST activity following 1 hour incubation of mature <i>S. mansoni</i> worms.	115
51-	Correlation between the concentration of artemether and praziquantel and the percentage increase in GST activity following 3 hours incubation of mature <i>S. mansoni</i> worms.	115
52-	Changes in activity of GR following incubation of immature S. mansoni worms in culture media containing 50 ng/ml, 75 ng/ml or 100 ng artemether for 1 and 3 hours.	117
53-	Correlation between the concentration of artemether and the percentage decrease in GR activity following 1 hour, and 3 hours incubation of immature <i>S. mansoni</i> worms	117
54-	Changes in activity of GR following incubation of mature <i>S. mansoni</i> worms in culture media containing 50 ng/ml, 75 ng/ml, or 100 ng/ml artemether for 1 and 3 hours	120
55-	Correlation between the concentration of artemether and the percentage decrease in GR activity following 1 hour, and 3 hours incubation of mature <i>S. mansoni</i> worms	120