

Distribution Pattern of Natural Radionuclides in NorthEast

Libya Using Different Nuclear Techniques.

Thesis

Submitted to Faculty of Science, Ain Shams University, in Fulfillment of the Requirements of the Doctorate of Philosophy Degree in Nuclear Physics

By

Areej Ibrahim Omar Hazawi

Assistant Lecturer, Faculty of Science, Omar Al Muktar University, Al Bayda, Libya

(2009)

Supervised by

Prof. Dr. Soad A. El-Fiki
Physics Department, Faculty of Science, Ain Shams University.
Dr. Elsayed Salama Ahmed
Dr. Lisayea Salama Immea

(2015)

APPROVAL SHEET

Name: Areej Ibrahim Omar Hazawi.

Title:Distribution pattern of natural radionuclides in northeast Libya using different nuclear techniques.

Supervisors:

Prof. Dr. Samir Y. El-Khamisy

Prof. of Nuclear, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Soad A. El-Fiki

Prof. of Nuclear, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Nabil A. El-Faramawy

Prof. of Nuclear, Physics Department, Faculty of Science, Ain Shams University.

Dr. El-sayed Salama Ahmed

Dr. of Nuclear, Physics Department, Faculty of Science, Ain Shams University.

<u>Acknowledgement</u>

All gratitude is due to ALLAH the most merciful, who guided and gave me strength to complete this work.

I wish to express my sincere thanks and gratitude to my team of supervisors.

I wish to express my deep thanks to **Prof.Samir Y. El-Khamisy** professor of Nuclear physics at Physics Department, Faculty of Science, Ain Shams University, for his supervision, honest guidance, continuous encouragement and trustful help through the experimentation and writing the manuscript.

My great thanks to the **Prof. Dr. Soad A. El-Fiki** professor of Nuclear physics at Physics Department, Faculty of Science, Ain Shams University, for her supervision and valuable assistance during the progress of this work.

I wish to express my thanks to **Prof. Dr. Nabil A. El- Faramawy** professor of Nuclear physics at Physics
Department, Faculty of Science, Ain Shams University,

I would like to thank with gratitude **Dr. El-sayed Salama Ahmed**, assistant professor of Nuclear Physics at Physics Department, Faculty of Science, Ain Shams University, for his kind supervision, kind encouragement, his continuous support and kind guidance throughout the present work.

I wish to express my deep thanks to my husband for hir patience, encouragement and understanding and my deep thanks with gratitude to all of my family specially my parents for their continuous support and encouragement during my research.

شكر و تقدير

أتقدم بخالص الشكر و التقدير الى ألاساتذة الذين قاموا بالاشراف:

أ.د/ سمير يوشع الخميسى أستاذ الفيزياء الاشعاعيه-قسم الفيزياء

كلية العلوم-جامعة عين شمس

أ.د/ سعاد عبد المنعم الفقى أستاذ الفيزياء الاشعاعيه-قسم الفيزياء

كلية العلوم-جامعة عين شمس

أ.د/نبيل على الفرماوى أستاذ الفيزياء الاشعاعيه-قسم الفيزياء

كلية العلوم-جامعة عين شمس

د / السيد سلامة أحمد مدرس مساعد الفيزياء الاشعاعيه-قسم الفيزياء

كلية العلوم-جامعة عين شمس

Contents

List of table	I
List of figures	III
Abstract	1
Introduction	2
Literature review	3
Aim of the work	15
Chapter 1:Theoretical Aspects	
1.1 Radioactivity in nature	16
i) Primordial nuclides	16
ii) Cosmogenic radionuclides	17
iii) Artificial radionuclides	18
1.2 Sources of the natural radioactivity	19
1.3 Distribution of naturally occurring radionuclides	20
i) Igneous rocks	21
ii) Sedimentary rocks	21
iii) Metamorphic rocks	22
1.3.1 Radionuclides in rocks	22
1.3.2 Radionuclides in soil	23
1.3.3 Air born radioactivity	25
1.3.4 Radionuclides in fresh water and the ocean	27

1.4 Radiation hazard	28
1.5 Radon	28
1.5.1 Radon propertie1	29
1.5.2. Radon isotopes	29
1.5.3 Radon daughters	32
1.5.4 Radon Risks	34
1.5.5 Radon sources	35
1.5.6 Radon emanation	36
1.5.7 Radon transport	42
1.5.8 Radon concentration in air	42
1.5.8.1 Indoor radon concentration	43
1.5.8.2 Outdoor radon concentration	43
1.6 Radiation units	44
1.7 Radiation exposure and doses	48
1.7.1 Absorbed dose	48
1.7.2 Dose equivalent	49
1.7.3Effective dose equivalent	50
1.7.4 Dose rate	51
1.7.5 Flux	52
1.8 Gamma ray properties and the reaction with the matter	52

1.8.1 photoelectric effect	53
1.8.2 Compton scattering	55
1.8.3. Pair production	56
1.8.4 Gamma attenuation coefficient	59
a) Absorber mass thickness	61
b) Buildup factor	61
1.9 Biological effects of radiation	62
1.9.1 Physical and prechemical stage	63
1.9.2 Chemical stage:	64
1.9.3 Biological stage	65
1.10 Establishment of limits of exposure	65
1.11 Exposure pathways	68
1.11.1 External exposure	70
1.11.2 Internal exposure	71
1.12 Health effects	73
Chapter 2: Experimental Techniques and Measurements	
2.1 Description of the study area	76
2.2 Experimental procedures	77
2.2.1 Soil samples	77
2.2.2Water samples	78

2.3 Detection techniques	81
2.3.1 The detector	81
2.3.2 High voltage power supply	83
2.3.3 Preamplifier	83
2.3.4 Amplifier	83
2.3.5 Multichannel analyzer	84
2.4 Energy calibration	84
2.5Energy resolution	85
2.6 Detection efficiency	87
2.7 Experimental setup	89
2.8 Evaluation of radiation hazards	93
2.8.1 Radium equivalent Ra _{eq}	93
2.8.2 External hazard index H _{ex}	93
$2.8.3$ The absorbed dose and effective dose rate $D, D_{\rm Eff}$	93
2.9 Radon measurements using CR-39	94
2.9.1 Etching methodology and its optimum conditions	95
2.9.2 Counting of tracks	96
2.9.3 Calibration of CR-39 detector	97

2.9.4 Radon exhalation rates	98
2.9.5 Effective radium content	
2.9.6 Emanation power (a)	100
Chapter 3: Results and Discussion	
Background measurements and detection system optimization	102
3.1.1 Introduction	102
3.1.2 The intrinsic properties	103
3.1.3 Nature of gamma background radiation in Ain Shams university	106
3.2. Radioactivity concentration in soil samples	110
3.2.1 Absorbed dose rates	120
3.2.2 Annual effective dose equivalent from soil	
3.2.3 Radium equivalent and hazard indices calculations for soil	123
3.3. Radioactivity concentration in water samples	128
3.4. Radon measurements	135
3.4.1Measurements of Rn exhalation rates	135
3.4.2Measurements of effective radium content	136
3.4.3 Measurements of emanation power	137
Conclusion	139
References	142
Arabic Summary	155

List of Table

Table	Title	Page No
Table 1.1	Natural radioactive series	20
Table 1.2	Radionuclides in rocks	23
Table 1.3	Radionuclides in soil	24
Table1.4	The radioactivity concentrations of some	28
	radionuclides in fresh water and the ocean (Bq / kg)	
Table 1.5	Some radon properties	31
Table 1.6	Radon and thoron and their daughters	33
Table 1.7	Coefficients of diffusion, D, for radon in various porous media	38
Table 1.8	The ratio between IUS and non IUS units	46
Table 1.9	Quality factor values for various types of radiation	47
Table 1.10	Relationship between quality factor and LET	51
Table 1.11	ICRP dose limits for occupational andpublic	66
Table 1.12	Probability coefficients for stochastic effects	67
Table 1.13	Maximum permissible concentrations of radio- isotopes in iter and air for occupational exposure for a 40 hour week.	69
Table 2.1	Relative intensities of gamma-rays from ²²⁶ Ra with its short-lived gamma-emitting daughters	91
Table 3.1	Experimental and calculated values of S for several H.P.Ge detectors.	105
Table 3.2	Intensity (I=photon/s) and absorbed dose(PGy/d)of the background spectra.	109

	110
Dose rate (nGy/d) in the present study compared	
	110
, ,	112
collected along the northeast coast of libya.	
The activity concentration of ²³⁸ U and ²¹⁰ Pb Bg/kg	117
The activity ratios of 226 Ra/ 238 U , 210 Pb/ 238 U , and	118
$^{210}\text{Pb}/^{226}\text{Ra}$.	
The average activity concentration in Bq/kg of the	119
radionuclides under investigation for different	
-	
1	
•	120
`	
	127
•	
	120
	130
-	
·	131
	131
	133
•	133
Physio –chemical characteristics of some water	134
Track density, areal exhalation rate and mass	136
exhalation rate values of the soil samples	
Effective radium content and emanation power	138
values of the soil samples	
	The average activity concentration in Bq/kg of the radionuclides under investigation for different depth and the minimum and maximum values given in parentheses. Comparison of average activity concentrations values in (Bq/kg) for Ra-226,Th-232 and K-40 in soil samples for different countries Values of radium equivalent, external hazard indice, representative level index ,absorbed dose and effective dose equivalent The mean activity concentration in (Bq/L) for water samples that collected from four location in Al-Bayda region The range and mean concentration in Bq/L for three types of water in Al-Bayda region Effective dose equivalent in well and tap water (mSv/y). Physio –chemical characteristics of some water samples in study area Track density, areal exhalation rate and mass exhalation rate values of the soil samples Effective radium content and emanation power

List of Figures

Fig	Title	Page
		No
Fig 1.1	The middle part of the ²³⁸ U series.	30
Fig 1.2	Sources of radiation exposure.	34
Fig 1.3	Guideline to the approximate coefficient of diffusion for radon in rocks of known porosity	39
Fig1.4	The variation of radon concentration with respect to distance into the rock.	39
Fig 1.5	The mechanism of photoelectric interaction	53
Fig1.6	The relationship between the photoelectric process section anda) photon energy, b) atomic number of the material	54
Fig1.7	Represents the Compton scattering	55
Fig1.8	Represent the pair production	57
Fig 1.9	The cross-section changing with E_r and Z	58
Fig 1.10	The relative importance of the three major types of gamma ray interactions. The lines show the values of Z and hv for which the two neighboring effects are just equal	59
Fig 1.11	Direct and scattered photons with the detector	62
Fig 2.1	The map of the study area	77
Fig 2.2	Calculation of energy resolution of HPGe-detector using 1173.238keV and 1332.502keV g-ray peaks	86

Fig 2.3	The relation between energy resolution and voltage for HPGe	87
Fig 2.4	Block diagram of the HPGe detector setup	90
Fig 2.5	The absolute efficiency energy curve for soil	92
Fig 2.6	The absolute efficiency energy curve for water	92
Fig 2.7	Arrangement of the CR-39 detector in a cylindrical glass container used as an emanation chamber.	95
Fig 2.8	Schematic construction of the used etching equipment for track revelation.	96
Fig 3.1	Efficiency of the 62.3 cc H.P.Ge detector at different distances.	106
Fig 3.2	Measured gamma background spectra	107
Fig 3.3	An example of the obtained spectra for soil samples	113
	(a) at depths 5-10 cm (b) at depths 50-70 cm	
Fig3.4	(a) Activity concentration of ²²⁶ Ra in soil samples	114
	(b) Activity concentration of ²³² Th in soil samples	115
	(c) Activity concentration of ⁴⁰ K in soil samples	116
Fig 3.5	Activity concentration of the radionuclides in some soil samples at depth (50-70)cm	117
Fig 3.6	The absorbed dose rate (nGy/h)for soil samples	121
Fig 3.7	Theannual effective dose equivalent (mSv/y) of soil samples	122
Fig 3.8	Radium equivalent dose Ra _{eq} (Bq/kg) of soil samples.	124
Fig 3.9	The external hazard index (H _{ex}) of soil samples.	125

Fig 3.10	The representative level index Iγr (Bq/kg) of soil samples	126
Fig 3.11	An example of the obtained spectra for sea water (a), well water (b) and tap water (c)	129
Fig 3.12	Average values of the radionuclides concentration in water samples	131