EXPERIMENTAL INDUCTION OF POSTERIOR VITREOUS DETACHMENT BY INTRAVITREAL INJECTION OF HYALURONIDASE AND PLASMIN

Thesis
Submitted for partial fulfillment of the
M. D. Degree in Ophthalmology

By

Inas Abd El-Fattah Abd El-Moitie M.B.B.Ch. (M.Sc.), Ophthalmology

Supervised By

Prof. Dr. Ehsan Moheb El-Mehelmy

Professor of Ophthalmology Faculty of Medicine Cairo University

Prof.Dr. Mansour Hassan Ahmed

Professor Of Ophthalmology Faculty of Medicine Beni Sueif University

Prof. Dr. Magda Rashad Serry

Professor of Pathology Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2008

بسم الله الرحمن الرحيم

"وَقُل رَبِّ زِحْنِي عِلْماً"

حدق الله العظيم سررة طه آية (114)

ACKNOWLEDGEMENT

At First I would like to thank God, the merciful and the behold for guiding me in producing this work.

I would like to thank Prof. Dr. Ehsan El- Mehelmy, Professor of Ophthalmology, Faculty of Medicine, Cairo University, for her kindness, time and effort. This work would have been incomplete except with her generous advice for which I will always be grateful.

Great thanks to Prof. Dr Mansour Hassan, Professor of Ophthalmology, Faculty of Medicine, Beni Sueif University, for his continuous encouragement and guidance.

Special thanks to Prof. Dr. Magda Serry, Professor of Pathology, Faculty of Medicine, Cairo University, for her unlimited support, keen supervision and advice.

I would also like to thank all members of the ophthalmology department for their help and support .

Great thanks to all members of my family for their continous encouragement and effort.

ABSTRACT

<u>Title</u>: Experimental induction of posterior vitreous detachment by intravitreal injection of hyaluronidase and plasmin.

<u>Aim</u>: To study and compare the effect of both hyaluronidase and plasmin in induction of posterior vitreous detachment (PVD) and vitreous liquefaction in rabbits.

<u>Subjets and Methods</u>: The study was performed on 40 white New Zealand rabbits. Twenty rabbits had one eye injected with hyaluronidase (20 IU/ 0.1 ml). The other 20 rabbits had one eye injected with plasmin (1 IU /0.1 ml). The fellow eye of all rabbits was injected with lactated Ringer's solution as a control. The specimens were examined after 2 and 4 weeks of injection using light microscopy and scanning electron microscopy.

Results: The control eye of all rabbits revealed no histopathological changes. Group A (2 weeks after hyaluronidase injection) revealed no histopathological changes resembling the control group. Group B (4 weeks after hyaluronidase injection) revealed partial PVD in 70% of cases and no effect on the rest of cases with disorganization of photoreceptors in 30% of cases. Group C (2 weeks after plasmin injection) revealed partial PVD in 80% of cases and no effect in the rest of cases with no disorganization of photoreceptors. Group D (4 weeks after plasmin injection) revealed total PVD in 80% of cases and partial PVD in the rest 20% of cases with no photoreceptors disorganization. No retinal hemorrhage or oedema were detected in any group.

Conclusion: The safety of intravitreal hyaluronidase and plasmin in induction of PVD has given encouraging results .The duration factor

plays an important role in their effect with more effect in having longer duration of action. Plasmin ,however, is more effective than hyaluronidase in PVD induction inspite of having lower concentration in the same duration of action.

KEY WORDS

Hyaluronidase, plasmin,intravitreal injection, posterior vitreous detachment, vitreous liquefaction, retinal toxicity, light microscopy, scanning electron microscopy

CONTENTS

I- Introduction and aim of the work	1
II- Review of Literature	4
- Anatomy of the vitreous	4
- Physiology of the vitreous	9
- Age-related vitreous degeneration	13
- Posterior vitreous detachment	15
- Epidemiology of posterior vitreous detachment	19
- Diagnosis of posterior vitreous detachment	21
- Complications of posterior vitreous detachment	29
- Management of posterior vitreous detachment	34
- Pharmacological vitreolysis	38
III- Subjects and Methods	69
IV –Results	76
V- Discussion	97
VI- Conclusion	104
VII- Summary	106
VIII- References	109
IX- Arabic Summary	

List of Abbreviations

⁶²-antiplasmin : Alpha 2-antiplasmin

AION : Anterior ischemic optic neuropathy.

APE : Autologous plasmin enzyme

APVD : Anomalous posterior vitreous detachment.

ATF : Amino terminal fragment

A II t : Annexin II tetramer

BSS : Balanced salt solution

Ca : Calcuim

cm : Centimeter

cc : Cubic centimeter

°C : Degree centigrade

D : Diopter

DLS : Dynamic light scattering

ECM : Extracellular matrix

EGF : Epidermal growth factor

ERG : Electroretinogram

G : Gauge

HS : Highly significant

H&E : Hematoxylin and eosin

ICG : Indocyanine green

ILM : Internal limiting membrane

IU : International unit

KDa : Kilodalton

LM : Light microscopy

mg/ kg : Milligram / kilogram

μ1 : Microliter

ml : Milliliter

mm : Millimeter

μ m : Micrometer

MMPs : Matrix metalloproteinases .

Nd: YAG : Neodymium: yttrium – Aluminium – Garnet

nm : Nanometer

no. : Number

nPA : Lanoteplase plasminogen activator.

NS : Non significant

OCT : Optical coherence tomography

PAI- 1 : Plasminogen activator inhibitor-1

PBS : Phosphate buffered saline

PHM : Posterior hyaloid membrane.

Pro-CB : Pro-cathepsin B

PRP : Panretinal photocoagulation

PVD : Posterior vitreous detachment

PVR : Proliferative vitreoretinopathy.

RAPD : Relative afferent pupillary defect.

RD : Retinal detachment

rPA : Reteplase plasminogen activators

SEM : Scanning electron microscopy

SPSS : Statistical package for the social science

TCF : Time correlation function

TNC : Tenascin C

TNK-tPA : Tenecteplaset - tissue plasminogen activator.

tPA : Tissue plasminogen activator.

UHR OCT : Ultraligh resolution optical coherence tomography

U-PA : Urokinase type –plasminogen activator

List of Figures

		No.
Fig. 1	Human vitreous	4
Fig. 2	Vitreous anatomy according to classical anatomical and	5
	histological studies	
Fig. 3	Dark –field slit microscopy of human vitreous	8
Fig. 4	The triple helix configuration of the collagen molecule	9
Fig. 5	Schematic diagram of vitreous collagen fibril structure	10
Fig .6	Age –related changes in human vitreous structure	14
Fig .7	Acute posterior vitreous detachment	16
	(a)synchisis;(b)uncomplicated PVD;(c)retinal tear formation	
	and vitreous haemorrhage;(d)avulsion of a retinal blood	
	vessel and vitreous haemorrhage	
Fig .8	A and B: Characteristic appearance of PHM in an eye with	17
	PVD as seen on slit lamp examination.C:Histology of	
	detached PHM showing a distinct membrane (arrowheads)	
	covering the posterior surface of the residual vitreous cortex	
	with spindle -shaped cells visible(arrows) along the	
	membrane .D:Higher power view of the PHM showing a	
	spindle –shaped cell	
Fig .9	Detached PHM in an eye that had previously undergone	17
	vitrectomy	
Fig .10	PHM with a visible defect(black arrow) and Weiss ring (white	23
	arrow)	
Fig .11	White line representing site of insertion of detached PHM into	24
	the retina	

Fig.12	A:shows partial PVD with apparent normal fovea seen by	25
	OCT.B:partial PVD with distortion of the fovea seen by UHR	
	OCT(arrows).	
Fig.13	Optical coherence tomographic images illustrating various	26
	stages of posterior vitreous detachment	
Fig.14	B-scan axial view showing an intragel hemorrhage and PVD	27
Figs.15&16	Axial views of two different PVDs.Top:complete separation	28
	of the posterior hyaloid from optic disc.Bottom:extensive	
	PVD with persistent attachment to the optic disc	
Fig.17	Red blood cells are seen as tiny red / brown dots in the	29
	anterior vitreous	
Fig.18	Pigment granules are larger in size and less refractile than red	30
	blood cells	
Fig.19	Dynamic light scattering	40
Fig.20	Chemical structure of hyaluronidase	46
Fig.21	Morphological structure of hyaluronidase	46
Fig.22	Structure of plasminogen	49
Fig.23	Overview of the plasminogen activator fibrinolytic system.	51
Fig .24	Structure of Human plasmin	52
Fig.25	Chemical structure of collagenase	58
Fig.26	Structure of tissue-type plasminogen activator (tPA), reteplase	63
	(rPA), lanoteplase (nPA), and tenecteplase	
Fig.27	The Fibrinolytic system	64
Fig.28	Urokinase-type plasminogen activator	66
Fig.29	The cathepsin-B proteolytic cascade	67
Fig.30	Site of intravitreal injection	71
Fig.31	Joel- JSM – 5200	73
Fig.32	Light microscopy after 2weeks of intravitreal hyaluronidase	76

absence of PVD, vitreous (V) is attached to the ILM (arrows) with intact photoreceptors (P). (H & E × 400). Fig .33 SEM after 2weeks of intravitreal hyaluronidase injection showing dense collagen fibers (C) covering the retinal surface	77
Fig .33 SEM after 2weeks of intravitreal hyaluronidase injection	
showing dense collagen fibers(C) covering the retinal surface	
denoting absence of PVD.(20KV×100)	
Fig.34 Light microscopy after 4 weeks of intravitrea	1 78
hyaluronidase injection showing partial PVD, remnants of	f
vitreous(V)(right arrow), bare ILM(I) (left arrow) & intac	t
photoreceptors (P) in specimen no. 4.(H& E × 400)	
Fig.35 Light microscopy after 4 weeks of intravitreal hyaluronidas	e 79
injection showing partial PVD, remnants of vitreous (V)(les	t
arrow), bare ILM (I)(right arrow)&disorganization of	f
photoreceptors(P) in specimen no.7. (H & E×400)	
Fig.36 SEM after 4 weeks of intravitreal hyaluronidase	80
injection showing partial PVD(arrows), vitreous collagen (C	
), bare ILM (I) in specimen no.1 (20KV×1500)	
Figs. 37&38 SEM after 4 weeks of intravitreal hyaluronidas	e 80
injection showing absence of PVD, vitreous collagen (C), i	n
specimen no.3(left ,20KV×750) & no.9(right ,20KV×150)	
Fig.39 Light microscopy after 2 weeks of intravitreal plasmi	n 81
injection showing partial PVD demonstrated by irregularity i	n
the inner retinal surface, remnants of vitreous(V)(right arrow)	,
bare ILM (I) (left arrow) ,intact photoreceptors(P)i	n
specimen no.5 (H & E × 400)	
Fig.40 SEM after 2 weeks of intravitreal plasmin injection showing	82
partial PVD(arrows), vitreous collagen (C),bare ILM (I) in	
specimen no.4 (20KV×200)	

Fig.41	SEM after 2weeks of intravitreal plasmin injection showing	83
	absence of PVD, vitreous collagen (C), in specimen	
	no.9(20KV×150)	
Fig.42	SEM after 2weeks of intravitreal plasmin injection showing	83
	absence of PVD, vitreous collagen (C), in specimen	
	no.10(20KV×500).	
Fig.43	Light microscopy showing total PVD after 4 weeks of	84
	intravitreal plasmin injection,bare ILM(I)(arrow) intact	
	photoreceptors(P) in specimen no.2 (H & E × 400)	
Fig.44	SEM showing total PVD after 4 weeks of inravitreal injection	85
	of plasmin, vitreous collagen (C),bare ILM (I)in specimen	
	no.5(20KV×200)	
Fig.45	SEM showing total PVD after 4 weeks of inravitreal injection	86
	of plasmin, vitreous collagen (C),bare ILM (I)in specimen	
	no.7(20KV×500)	
Fig. 46	SEM showing partial PVD (arrows)after 4 weeks of	86
	inravitreal plasmin injection, vitreous collagen (C),bare ILM	
	(I) in specimen no.10(20KV×200)	
Fig .47	Light microscopy of control group showing absence of PVD	87
	vitreous(v)(arrow), nerve fiber layer(NFL), Photorecptor(PS)	
	inner and outer segments.(H & E \times 400)	
Fig .48	SEM of control group showing dense collagen fibers(C)	88
	covering the retinal surface denoting absence of	
	PVD(20KV×75)	
Fig .49	Frequency of PVD in studied cases and control group after2	89
	weeks of intravitreal hyaluronidase injection demonstrated by	
	light microscopy &SEM	

Fig .50	Frequency of partial PVD in studied cases and control group after 4 weeks of intravitreal hyaluronidase injection demonstrated by light microscopy& SEM	90
Fig .51	Frequency of photoreceptors disorganization in studied cases and control group after intravitreal hyaluronidase injection demonstrated by light microscopy & SEM	91
Fig .52	Frequency of partial PVD in studied cases and control group after 2 weeks of intravitreal plasmin injection demonstrated by light microscopy &SEM	92
Fig .53	Frequency of total PVD in studied cases and control group after 4 weeks of intravitreal injection of plasmin demonstrated by light microscopy& SEM.	93
Fig .54	Frequency of photoreceptors disorganization in studied cases and control group after intravitreal plasmin injection.	94
Fig .55	Summary of statistical analysis of the study	95

List of Tables

		No.
Table 1	Management of acute posterior vitreous detachment.	36
Table 2	Management of posterior vitreous detachment.	37
Table 3	Frequency of PVD of the studied cases in comparison to	89
	the control group after 2 weeks of intravitreal injection of	
	hyaluronidase demonstrated by light microscopy &SEM.	
Table 4	Frequency of partial PVD of the studied cases in	90
	comparison to the control group after 4 weeks of	
	intravitreal injection of hyaluronidase demonstrated by	
	light microscopy & SEM.	
Table 5	Frequency of disorganization of photoreceptors of the	91
	studied cases in comparison to the control group after	
	intravitreal injection of hyaluronidase demonstrated by	
	light microscopy & SEM.	
Table 6	Frequency of partial PVD of the studied cases in	92
	comparison to the control group after 2 weeks of	
	intravitreal plasmin injection demonstrated by light	
	microscopy&SEM.	
Table 7	Frequency of total PVD in the studied cases in comparison	93
	to the control group after 4 weeks of intravitreal plasmin	
	injection demonstrated by light microscopy&SEM.	
Table 8	Frequency of photoreceptors disorganization in studied	94
	cases and control group after intravitreal plasmin injection.	
Table 9	Summary of statistical analysis of the study.	95

INTRODUCTION AND AIM OF THE WORK

Vitreous surgical procedures have been performed to relieve vitreoretinal tractions or adhesions to facilitate reattachment of a detached retina and to reduce retinal oedema. The level of difficulty of vitreous surgery depends on the presence or absence of PVD and the degree of adhesion between the vitreous body and the retina. (Sebag, 1989).

The techniques and instruments for vitreous surgery have greatly improved in recent years. However, the surgical removal of the vitreous cortex is still difficult in some patients and carries the risk for complications such as retinal breaks, retinal detachment, and retinal nerve fiber damage (Han et al, 1998).

Certain chemicals have been used to induce PVD and vitreolysis to facilitate vitreous surgery for better outcome or even to avoid vitrectomy (Harooni et al, 1998).

The enzymes used for Pharmacologic vitreolysis include: hyaluronidase (Harroni et al., 1998), plasmin (Verstraeten et al., 1993), dispase(Tezel et al., 1998), chondroinase (Bishop et al, 1999), microplasmin (Sebag,2005), collagenase(Sebag,2005), nattokinase (Takano et al, 2006) tissue plasminogen activator(Trese et al 2002) and urokinase-type plasminogen activator(Trese et al 2002).

The goal of such pharmachological vitreolysis is to manipulate the vitreous collagen both centrally achieving liquefaction, as well as along the vitreoretinal surface to be able to achieve a cleavage plane cleaner than can be mechanically achieved currently, and to get a better anatomic results (**Trese**, 2002).