

High Performance Facades: Designing Office Building Facades to Enhance Indoor Daylighting Performance.

A Thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architecture Engineering

by

Mahmoud Islam Abdelhay Gadelhak

BSc in Architecture 2009 – Ain Shams University

Under Supervision

Professor Dr. Yasser O qj co gf Mansour

Professor of Architecture Ain Shams University

Professor Dr. Hanan Mostafa Kamal Sabry

Professor of Architecture and Environmental Control Ain Shams University

STATEMENT

This thesis is submitted to Ain Shams University for the M.Sc. degree in Architecture.

The work included in this thesis was carried out by the researcher at the Department of Architecture, Faculty of Engineering, Ain Shams University, and During the Period from September 2009 to May 2013.

No Part of this thesis has been submitted for a degree of a qualification at any other university or institute.

Name: Mahmoud Islam Abdelhay Gadelhak
Signature:
Date:

BOARD OF EXAMINERS

Board	<u>Signature</u>
Professor Dr. Morad Abdelkader Abdelmohsen	
Professor of Architecture and Environmental Control	
Department of Architecture	
Faculty of Engineering	
Ain Shams University	
Professor Dr. Ahmed Hussien Sherif	
Professor of Architecture	
Department of Construction and Architectural Engineering	
School of Science and Engineering	
The American University in Cairo	
Professor Dr. Yasser Mohamed Mansour	
Professor of Architecture	
Department of Architecture	
Faculty of Engineering	
Ain Shams University	
Professor Dr. Hanan Mostafa Kamal Sabry	
Professor of Architecture and Environmental Control	
Department of Architecture	
Faculty of Engineering	
Ain Shams University	

Acknowledgements

Completing my M.Sc. degree is probably one of the most challenging activities of my life. The best and worst moments of my master degree journey have been shared with many people. One of the joys of completion is to look over the journey past and remember all the friends and family who have helped and supported me along this long but fulfilling road.

It has been a great privilege to spend these years in the Department of Architecture at Ain Shams University; its members will always remain dear to me. First, and foremost, I offer my sincerest gratitude to my supervisors. Prof Dr. Yasser Mansour provided me with the vision, encouragement and advice necessary for proceeding my thesis and career afterwards. Prof. Dr. Hanan Sabry, who has supported me throughout my thesis with her patience and knowledge whilst allowing me the room to work in my own way. I attribute the level of my Masters degree to her encouragement and effort, without her this thesis would not have been completed or written.

I am also indebted to the IDBT research team at the American University in Cairo which provided a safe space for me to explore the new world of being a researcher. At the head of the team Prof Dr. Ahmed Sherif, whose mentorship was paramount in providing a well rounded experience consistent with my long-term career goals. He encouraged me to not only grow as a researcher and an architect but also as an instructor and an independent thinker.

I would also like to thank Dr. Ahmed Rashed for his assistance and guidance in getting my graduate career started on the right foot and providing me with the foundation and enthusiasm for pursuing my studies.

In my daily work I have been blessed with a friendly and cheerful group of coworkers and colleagues. Thanks to all my fellows at Ain Shams University, The American University in Cairo, and The British University in Egypt. Many friends have helped me stay sane through these difficult years. Their support and care helped me overcome setbacks and stay focused on my graduate study. I greatly value their friendship and I deeply appreciate their belief in me.

I wish to thank my fiancée Nancy, whose support and encouragement never wavered and whose patience is apparently boundless. Most of all, I would like to thank my family for supporting me throughout all my studies. My father, Eng. Islam Gadelhak who instilled in me a love of knowledge and who taught me the value of education. My mother and my brothers Mohamed and Ahmed for being there when things go wrong. It was their love that raised me up again when I got weary. I owe them everything and wish I could show them just how much I love and appreciate them.

Abstract

While architects aim to design better spaces and achieve a better user experience in their designs, which includes visual and thermal comfort, only few consider the daylighting performance through the design process. That reflects on the quality of the designed spaces. The building skin plays the main role in delivering the natural daylighting inside the building; therefore building skins shouldn't be just designed for its aesthetic aspects but also as a functioning element in the building. This thesis aims at identifying the daylighting systems and strategies that can be used in office building facades to create high performance facades. The research investigates the use of several types of widely used daylighting systems and their effect on providing good daylit office space around the year. This includes shading systems such as: horizontal and vertical sun breakers, and solar screens; as well as redirecting systems such as light shelves and louvers. The research addresses these factors in the desert climate of the city of Cairo, Egypt that is characterized by sunny clearskies. The research also proposes and investigates an alternative method in designing performative buildings, by integrating performance simulation techniques and computational methods. This method aims at reaching optimal and high performance solutions from a wide range of designs in the early design stages.

The thesis consists of three parts and ends with the conclusions and recommendations. The first part (chapter 1) investigates the development of high performance facade and studies the strategies and systems used for enhancing the daylighting performance. In the second part (chapter 2) the available daylighting metrics and performance indicators were analyzed. An office space in Cairo was selected as a case study and its daylighting performance was analyzed. In the third part (chapters 3, 4, and 5) the effect of using shading and redirecting systems on daylighting performance was studied. Moreover, an investigation was conducted on the ability of optimization techniques such as Genetic Algorithms (GA) to be used for reaching optimal design by combining two or more systems together.

The studied cases were parametrically modeled using Grasshopper and Rhinoceros 3D modeling software. Diva-for-Rhino a daylighting simulation plug-in was used to interface Radiance and Daysim for annual daylighting simulation and illuminance calculation. The daylighting level adequacy was evaluated annually using Dynamic Daylighting Performance Metrics (DDPM), while Daylight Glare Probability was calculated for visual comfort assessment.

The results provide a daylight performance-based comparison of the different techniques and parameters along with guidelines for using each of them. Moreover, for each orientation, the thesis presents a matrix of different possible solution that can aid designers in creating a well-daylit office spaces.

Abbreviations

CBDM Climate based daylighting metrics

CGI CIE Glare Index

CIE Commission Internationale de l'Eclairage

DA Daylight Autonomy

DDPM Dynamic Daylight Performance Metrics

DF Daylight Factor

DGI Daylight Glare Index

DGP Daylight Glare Probability

GA Genetic Algorithms

HSA Horizontal Shading Angle

SPT Single Point in Time

UDI Useful Daylight Index

UGR Unified Glare Index

VSA Vertical Shading Angle

WWR Window Wall Ratio

Keywords

Daylighting Systems; High Performance Facade; Daylighting Simulation; Daylight Availability; Daylight Glare Probability; Optimization; Form

Finding; Genetic Algorithm

Table of Contents

S	TATE	MEN	Γ	III
В	OARD	OF	EXAMINERS	V
11	ITRO[DUCT	TON	1
	OVER	VIEW		3
	RESE	ARCH	PROBLEM	4
	RESE	ARCH	Objectives	4
	RESE	ARCH	METHODOLOGY	5
	SCOP	E AND	LIMITATIONS	5
	RESE	ARCH	STRUCTURE	5
	PREV	ious ,	ACADEMIC THESES IN EGYPT	5
1	HIC	GH P	ERFORMANCE FACADES AND DAYLIGHTING STRATEGIE	S13
•				
	1.1		RODUCTION	
	1.2		E EVOLUTION OF FAÇADES: FROM WALL TO HIGH PERFORMANCE	
	1.2		Facade Openings	
		2.2	· · · · · · · · · · · · · · · · · · ·	
	1.2		High Performance Facades	
	1.3		AH PERFORMANCE FAÇADES AND DAYLIGHTING	
	1.3		Daylighting in Buildings	
		3.2	Daylighting Strategies	
	1.4	Tyı	PES OF DAYLIGHTING SYSTEMS	
	1.4	l. 1	Shading Systems:	
	1.4		Daylight redirecting Systems:	
	1.5	Co	NCLUSION	XXIX
2	DA	YLIG	SHTING PERFORMANCE SIMULATION METHODOLOGY	31
	2.1	Int	RODUCTION	33
	2.2	Da	YLIGHT METRICS AND PERFORMANCE INDICATORS	33
	2.2	2.1	Quantitative Daylight Metrics (work plane Illuminance)	33
	2.2	2.2	Qualitative Daylight Metrics	35

	2.3	Base	E CASE	36
	2.3.	.1	Location	36
	2.3.	2	Base Case Dimensions and Parameters	37
	2.4	Mod	ELED CASES	38
	2.5	SIMU	ILATION PARAMETERS AND ASSUMPTIONS	40
	2.5.	.1	Daylighting Metrics	40
	2.5.	2	Simulation Software	40
	2.5.	.3	Weather data	41
	2.5.	4	Occupancy	41
	2.5.	.5	Work plane	42
	2.6	Base	E CASE SIMULATION RESULTS	42
	2.7	Con	CLUSION	43
3	SHA	ADING	G SYSTEMS DAYLIGHTING ANALYSIS AND GUIDELINES	45
	3.1	Intr	ODUCTION	47
	3.2	SHAI	DING DEVICES DESIGN	47
	3.3	Dayı	LIGHT AVAILABILITY ANALYSIS	49
	3.3.	.1	Horizontal Sun Breakers	49
	3.3.	2	Vertical Sun Breakers	58
	3.3.	3	Solar Screens	66
	3.4	GLA	RE ANALYSIS	73
	3.4.	.1	South Orientation	73
	3.4.	.2	East Orientation	73
	3.5	Con	CLUSION	75
4	DA	YLIGH	HT REDIRECTING SYSTEMS DAYLIGHTING ANALYSIS	S AND
G	UIDEL	INES		77
	4.1	INTR	ODUCTION	79
	4.2		RECTING SYSTEMS DESIGN	
	4.2.		Light shelves	
			Louvers and Blinds	
	4.3	_	LIGHT AVAILABILITY ANALYSIS	
	4.3.		Light Shelves	

	4.3	.2	Louvers and Blinds	91
	4.4	GLA	RE ANALYSIS	99
	4.4	.1	South Orientation	99
	4.4	.2	East Orientation	100
	4.5	Cor	NCLUSION	102
	4.5	.1	South orientation	102
	4.5	.2	East orientation	102
5	GE	NER	ATIVE DESIGN, OPTIMIZATION AND FORM FINDING	105
	5.1	Inte	RODUCTION	107
	5.2	Орт	IMIZATION METHODS	107
	5.2	2.1	Overview	107
	5.2	.2	Optimization for Daylighting Performance	108
	5.3	Par	AMETRIC MODELING AND OPTIMIZATION METHODOLOGY	109
	5.4	FIR	ST CASE STUDY: LIGHT SHELF AND SOLAR SCREEN COMBINATION	110
	5.4	.1	Daylighting performance optimization results	110
	5.5	SEC	OND CASE STUDY: FORM FINDING	113
	5.5	.1	Daylighting performance optimization results	114
	5.6	Cor	NCLUSION	116
6	СО	NCL	USIONS AND RECOMMENDATIONS	119
	6.1	Cor	NCLUSION	121
	6.1	.1	Shading Systems Guidelines	121
	6.1	.2	Redirecting Systems Recommendations and Guidelines	122
	6.1	.3	Optimization and Form Finding	123
	6.2	Limi	TATIONS AND GENERALIZATION	124
	6.3	Fut	URE W ORK	124
Α	PPEN	DICE	S	127
	Apper	NDIX A	x: SIMULATION SOFTWARE INTERFACE AND INPUTS	129
			S: OPTIMIZATION RESULTS	
R	EFERI	ENCE	:S ERROR! BOOKMARK NOT D	EFINED.

List of Figures

Chapter One

Figure 1-1 An example of a classic modernism fully glazed building10
Figure 1-2 An example of a modern fully glazed buildings1
Figure 1-3 An Example of a building with high performance facade1
Figure 1-4 Façade detail, ARAG-Tower Düsseldorf, Germany (2001)1
Figure 1-5 The evolution of the same building's facade. The difference betwee
every two stages is almost 50 years1
Figure 1-6 The effect of floor plate depth on artificial lighting requirements. The
shallower the floor plan the less dependence on artificial lighting19
Figure 1-7 Vernacular buildings in Siwa Oasis, Egypt with small apertures20
Figure 1-8 Office building in California, US. The two images show the users left the
internal roller shades closed no matter the external conditions. Photo credit: Charle
C. Benton2
Figure 1-9 Horizontal Sun Breakers
Figure 1-10 The use of horizontal Fixed and opera able shading devices in the
Nordic Embassies building. Berlin, Germany29
Figure 1-11 Horizontal sun shading in the university of the sunshine coast
chancellery, Queensland, Australia2
Figure 1-12 Vertical Sun Breakers2
Figure 1-13 Tilted openings and vertical shading in the KfW headquarters building
Frankfurt, Germany2
Figure 1-14 Aluminum Vertical Louver. DEXONE company, China29
Figure 1-15 Solar Screens2
Figure 1-16 Traditional islamic mashrabia, beit alsehiemy. Cairo, Egypt20
Figure 1-17 Modern forms of solar screens used in the buildings of America
University in Cairo2
Figure 1-18 Light Shelves2
Figure 1-19 Daylight distribution from an internal light shelf in a library2
Figure 1-20 Movable light shelves system utilized at the SOKA BAU building in
Wiesbaden, Germany2
Figure 1-21 Louvers

Figure 1-22 Louver system used in the New York Times new headquarters28
Figure 1-23 Louvers in Darmstadt's high-tech home the overall winner of the 2007
Solar Decathlon
Chapter Two
Figure 2-1: Isometric view of the studied office room38
Figure 2-2: Architectural drawings for the tested space. The analysis grid and
camera position for daylighting and glare performance are also indicated38
Figure 2-3 Daylighting systems studied for South and East/West orientations39
Figure 2-5 Modeling and Simulation software used41
Chapter Three
Figure 3-1 Annual sun path for Cairo, Egypt. Highest and lowest mid-day altitudes
are shown47
Figure 3-2 Calculating the VSA, HSA and Shading Masks for shading devices48
Figure 3-3 The four studied VSA and HSA for each system48
Figure 3-4 Daylight Availability distribution analysis relative to area percentage for
the three horizontal sun breaker rotation angles tested in South orientation50
Figure 3-5 Daylight Availability distribution analysis relative to area percentage for
the three horizontal sun breaker slat number tested in South orientation52
Figure 3-6 Daylight Availability distribution analysis relative to area percentage for
the three horizontal sun breaker rotation angles tested in East/West orientation54
Figure 3-7 Daylight Availability distribution analysis relative to space area
percentage for the three horizontal sun breaker slat number tested in South
orientation56
Figure 3-8 Daylight Availability distribution analysis relative to space area
percentage for the two vertical sun breaker rotation angles tested in South59
Figure 3-9 Daylight Availability distribution analysis relative to space area
percentage for the three vertical sun breaker fins number tested in South61
Figure 3-10 Daylight Availability distribution analysis relative to space area
percentage for the three vertical sun breaker rotation angle tested in East63

Figure 3-11 Daylight Availability distribution analysis relative to space area
percentage for the three vertical sun breaker fins number tested in East64
Figure 3-12 The different Solar screen aspect ratios investigated66
Figure 3-13 Daylight Availability distribution analysis relative to space area
percentage for the three Solar screens perforation ratios in south67
Figure 3-14 Daylight Availability distribution analysis relative to space area
percentage for the three Solar screens aspect ratios in south69
Figure 3-15 Daylight Availability distribution analysis relative to space area
percentage for the three Solar screens perforation ratios in East71
Figure 3-16 Daylight Availability distribution analysis relative to space area
percentage for the three Solar screens aspect ratios in East72
Chapter Four
Figure 4-1 Principle concept of light shelves79
Figure 4-2 Light shelve position and its effect on different sun angles79
Figure 4-3 Louvers optimized for sunlight redirection, shading and combined system
80
Figure 4-4 Daylight Availability distribution analysis relative to area percentage fo
the four light shelves rotation angles tested in South orientation82
Figure 4-5 Daylight Availability distribution analysis relative to area percentage fo
the four added internal light shelves tested in South orientation84
Figure 4-6 Daylight Availability distribution analysis relative to area percentage fo
the three horizontal sun breaker rotation angles tested in East/West orientation87
Figure 4-7 Daylight Availability distribution analysis relative to space area
percentage for the three horizontal sun breaker slat number tested in South
orientation89
Figure 4-8 Daylight Availability distribution analysis relative to space area
percentage for the three conventional louvers rotation angles tested in South93
Figure 4-9 Daylight Availability distribution analysis relative to space area
percentage for the three combined louvers rotation angles tested in South95

Figure 4-10 Daylight Availability distribution analysis relative to space area
percentage for the three conventional louvers with different rotation angles tested in
East96
Figure 4-11 Daylight Availability distribution analysis relative to space area
percentage for the three combined louver rotation angles tested in East98
Chapter Five
Figure 5-1 Optimization Methodology Diagram109
Figure 5-2 First case study after 26 generations, fittest design had 64% daylit area.
110
Figure 5-3 Iterations against daylit area percentages for the 26 generations111
Figure 5-4 The Highest, Lowest and mean value for the different generations112
Figure 5-5 Gills surface free form. Image courtesy: Arturo Tedeschi "Parametric
Architecture with Grasshopper"113
Figure 5-6 the use of gills surface as vertical shading device in Once Ocean pavilion
by Soma Architecture
Figure 5-7 Gills surface used in the design of the facade openings of Hills place, by
Amanda Levete
Figure 5-8 Architectural drawings for the proposed daylighting system114
Figure 5-9 Second case study after 21 generations, fittest design had 56% daylif
area115
Figure 5-10 Iterations against daylit area percentages for the 21 generations115
Figure 5-11 The Highest, Lowest and mean value for the different generations115
Appendices
Figure A- 1 Materials selection interface showing the selected materials129
Figure A- 2 Daylight Availability simulation input parameters130
Figure A- 3 Glare simulations input parameters

List of Tables

Chapter One

Table 1-1 Classification of different daylighting systems	22
Chapter Two	
Table 2-1 Comparison between seven daylighting metrics.	35
Table 2-2 The monthly, seasonal and annual mean number of days of the sky-cov	⁄er
occurrence over Cairo during the period of (1992–2003)	37
Table 2-3: Dimensions and properties of the tested office space	37
Table 2-4: Radiance simulation parameters	41
Table 2-5 Daylight Availability distribution in South and East orientations	42
Table 2-6 Glare analysis results for South and East oriented base cases	43
Chapter Three	
Table 3-1 Studied horizontal sun breaker cases with different rotation angle a	nd
slats number	49
Table 3-2: South orientation Daylight Availability distribution for Horizontal S	un
Breakers with different Rotation angles	51
Table 3-3 South orientation Daylight Availability distribution for Horizontal S	
Breakers with different slat numbers	52
Table 3-4 Daylit area percentages matrix for all South horizontal sun breaker cases	s.
	53
Table 3-5: : East orientation Daylight Availability distribution for Horizontal S	un
Breakers with different Rotation angles	55
Table 3-6 South orientation Daylight Availability distribution for Horizontal S	
Breakers with different slat numbers	56
Table 3-7 Daylit area percentages matrix for all East horizontal sun breaker cases	57
Table 3-8 Studied Vertical Sun Breaker cases with different Rotation angles	58
Table 3-9 South orientation Daylight Availability distribution for Vertical S	un
Breakers with different Rotation angles	60

Table 3-10 South orientation Daylight Availability distribution for Vertical Sun
Breakers with different Fins number61
Table 3-11 Daylit area percentages matrix for all South vertical sun breaker cases 62
Table 3-12 East orientation Daylight Availability distribution for Vertical Sun Breakers
with different Rotation angles64
Table 3-13 East orientation Daylight Availability distribution for Vertical Sun Breakers
with different Fins number65
Table 3-14 Daylit area percentages matrix for all South vertical sun breaker cases 65
3-15 South orientation Daylight Availability distribution for Solar Screens with
different Perforation ratios67
Table 3-16 Daylit area percentages matrix for all South solar screen cases68
3-17 South orientation Daylight Availability distribution for Solar Screens with
different Aspect ratios69
3-18 Daylit area percentages matrix for all East solar screen cases70
3-19 East orientation Daylight Availability distribution for Solar Screens with different
Perforation ratios
Table 3-20 East orientation Daylight Availability distribution for Solar Screens with
different Aspect ratios
Table 3-21 Glare analysis results for Cases with highest performance in East73
Table 3-22 Glare analysis results for Cases with highest performance in South74
Chapter Four
Table 4-1 Studied Light shelf cases with different rotation angle and Internal light
shelves depth81
Table 4-2: South orientation Daylight Availability distribution for light shelves with
different rotation angles83
Table 4-3 South orientation Daylight Availability distribution for Light shelves with
different internal depths85
Table 4-4 Daylit area percentages matrix for all light louver cases in South86
Table 4-5: East orientation Daylight Availability distribution for Horizontal Sun
Breakers with different Rotation angles88