

Ain Shams University Faculty of Engineering Department of Structural Engineering

Behaviour of Soil Reinforced with Randomly Distributed Fibers

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of **MASTER OF SCIENCE IN CIVIL ENGINEERING**

Submitted by

Hesham Mohammed Atef Ebrahim Gad Eldesouky

B.Sc. in Civil Engineering - Structural Engineering-2008 Ain Shams University - Faculty of Engineering

Supervised by

Dr. Mohamed Monier Sayed Morsy

Associate Professor of Geotechnical
Engineering
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Dr. Mohamed Farouk Mohamed Ibrahim Mansour

Assistant Professor of Geotechnical
Engineering
Structural Engineering Department
Faculty of Engineering
Ain Shams University

June 2013

Ain Shams University Faculty of Engineering Department of Structural Engineering

EXAMINERS COMMITTEE

Name:

Hesham Mohammed Atef Ebrahim Gad Eldesouky Behaviour of Soil Reinforced with Randomly Distributed Thesis:

Fibers

Degree: Master of Science in Structural Engineering

Name and Affiliation	Signature
Prof. Ashraf Abd El-Hay Said El-Ashaal Head of Construction Research Institute National Water Research Center	
Prof. Mona Mohamed Mostafa Eid Professor of Geotechnical Engineering Faculty of Engineering- Ain Shams University	
Associate Prof. Mohamed Monier Sayed Morsy Associate Professor of Geotechnical Engineering Faculty of Engineering- Ain Shams University	

Date: 26/06/2013

Curriculum of Vite

Name: Hesham Mohammed Atef Ebrahim Gad Eldesouky

Date of Birth: 24, September, 1986

Place of Birth: Riyad, Kingdom of Saudi Arbia

Nationality: Egyptian

University Degree: B.Sc.in Civil Engineering, Faculty of Engineering,

Ain Shams University, 2008.

Current Job: Teaching Assistant at Structural department,

Faculty of Engineering, Ain Shams University

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering (Structural Eng.)

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or qualification at any other university or institution.

Name: Hesham Mohammed Atef Ebrahim Gad Eldesouky

Signature:

Date:

Acknowldgement

I would like to express my gratitude and respect to my supervisor and teacher, Dr. Mohamed Morsy, for his support and financial aid throughout this research. I am also thankful to my co-supervisor, Dr. Mohamed Mansour, for his efforts and advices throughout this research. Working with Dr. Mohamed Morsy and Dr. Mohamed Mansour has been a great learning experience.

I also want to thank the staff of Construction Research Institute of National Water Research Center for giving me the opportunity to carry out part of the experimental work in the institute laboratory facilities.

I would like to thank my colleagues and the technical staff of the Soil Mechanics and Foundation Engineering Laboratory for their support, especially chief technician, Mr. Mohamed Mostafa, for his help with the insitu tests.

I am very thankful to my family and my friends for their continuous support and effort.

Abstract of M.Sc. Thesis

Hesham Mohammed Atef Ebrahim Gad Eldesouky, Behaviour of soil reinforced with randomly distributed fibers, Master of Engineering Science Thesis, Ain Shams University, 2013

The use of reinforcement to increase the stability of earth structures has increased in the past decades. Most of these projects are constructed using traditional planar reinforcement which provides tensile resistance in their direction only. Continuous planes of weakness may be introduced at the interface between reinforcement and the soil. On the other side, the use of randomly-distributed short fibers within the soil mass provides an isotropic increase in the shear strength without introducing planes of weakness.

Soil reinforcement with randomly-reinforced fibers seems to be a very promising soil improvement technique. However, the researches in such field are limited. The fiber-reinforced soil behaviour is complicated, and is affected greatly by the used materials in addition to other factors such as preparation techniques. More researches are required in this field to help understanding its behaviour and the factors affecting it.

A laboratory testing program is conducted in this study in order to achieve such goal. The program purpose is to evaluate the fibers inclusion effect on the soil shear strength, deformation behaviour and volumetric response. The reinforced soil behaviour is evaluated using direct shear tests, confined compression tests and plate load tests.

The study also directed to investigate the possibility of using the fiber-reinforced soil as an alternative to the conventional unreinforced compacted sand. Therefore, the effects of other parameters such as the moisture content and relative density are investigated. The test specimens are prepared at different relative densities (25%, 60% and 90%). The moisture contents adopted in this study are chosen to be dry of the optimum moisture content determined from the modified proctor test.

The study introduces the preparation techniques for both the reinforced direct shear specimens and the reinforced test pit for the plate load test. Both the strength and deformation behaviours are assessed from the laboratory and in-situ tests. The results show that the reinforced loose dry sand has the same shear strength as the unreinforced moist very dense one. The laboratory and in-situ tests results suggest that the fibers inclusion improves the sand shear strength in comparison to the effect of increasing the soil relative density by compaction. However, increasing the relative density enhances the settlement more than the fibers inclusion does.

Keywords: Fiber-reinforced soil, randomly-distributed fibers, direct shear test, plate load test, shear strength of fiber-reinforced sand, dilatancy of fiber-reinforced sand.

Summary of M.Sc. Thesis

A series of laboratory and filed tests are conducted in this research study to investigate the effect of the inclusion of discrete randomly-distributed short fibers on the mechanical behaviour of sand. Direct shear tests are conducted on both reinforced and unreinforced sand specimens. The direct shear test results are utilized to investigate the effect of fibers incusion on the shear strength and volumetric change behaviours. The deformation behaviour is investigated through a series of confined compression tests carried out in the direct shear apparatus. Plate load tests are conducted to study the beahviour of fiber-reinforced soil over large scale.

This thesis consists of six chapters. The contents of each chapter are summarized as follows:

Chapter one covers an introduction to the research study, a statement of the problem followed by the research objectives and the thesis outline.

Chapter two presents a review of the results and the theories described in previous studies that dealt with the fiber-reinforced soil behaviour.

Chapter three shows descriptions of all the experimental work conducted on unreinforced and reinforced sand specimens to study effect of the different parameters on the strength and deformation behaviour. Definitions for the fiber-reinforced soil basic parameters are also presented.

Chapter four analyse the laboratory tests results. A discussion on the effect of the fibers inclusion on the mechanical behaviour of sand is presented.

Chapter five provides a description of the in-situ plate load tests setup and results adopted in this study. A comparison between the laboratory and filed behaviours is also provided in this chapter.

Chapter six summarizes the outcome of the laboratory and filed investigation, in addition to the research conclusions. Recommendations for future research are presented regarding the fiber-reinforced soil behaviour.

Table of Contents

List of Tables	V
List of Figures	. VII
List of SymbolsX	XVI
1. Introduction	1
1.1 General	1
1.2 Problem Definition	2
1.3 Research Objectives	3
1.4 Thesis Organization	4
2. Shear Strength and Deformation Behaviours of Fiber-reinforced Soi	ils.6
2.1 Introduction	6
2.1 Systemically-Reinforced Soil	7
2.1.1 Pseudo-cohesion theory	8
2.1.2 Confining stress theory	12
2.2 Randomly-Oriented Reinforcement	15
2.2.1 Summary of previous studies	16
2.2.2 Relative density of fiber-reinforced sand	19
2.2.3 Models for fiber-reinforced soil strength behaviour	20
2.2.4 Experimental and field studies on randomly-reinforced soil	32
2.3 Reinforcement Effect on Soil Deformation Behaviour	36
2.3.1 Effect of reinforcement on the stress-strain curve	36
2.3.2 Models to predict the stress-strain behaviour of reinforced soil	42

2.3.3 Experimental and Field Studies on the Deformation Behavi	our of
Randomly-Reinforced Soil	48
2.4 Effect of Soil Reinforcement on Volumetric Strain	51
2.4.1 Effect of random reinforcement on the soil volumetric	strain
behaviour	51
2.4.2 Models for volumetric change of fiber-reinforced soil	53
2.5 Summary	56
3. Experimental Testing Program	88
3.1 Introduction	88
3.2 Materials Properties	88
3.2.1 Sand	88
3.2.2 Fibers	90
3.3 Instrumentation and Data Acquisition System	91
3.3.1 Direct shear apparatus	91
3.3.2 Data acquisition system	91
3.4 Definitions of the Fiber-Reinforced Soil Parameters	92
3.4.1 Relative density and voids ratio	93
3.4.2 Fibers content by weight	97
3.5 Testing Program	99
3.5.1 Direct shear testing program	99
3.5.2 Settlement testing program	101
3.6 Testing Procedure	101
3.6.1 Specimen preparation	101

3.6.2 Shearing of specimens	105
3.6.3 Calculation and analysis of data	106
3.6.4 Confined compression tests	107
3.6.5 Repeatability of tests	107
3.7 Tests Results	108
4. Strength and Deformation Behaviours of Fiber-Reinforced Sand	133
4.1 Introduction	133
4.2 Results of Direct Shear Tests on Unreinforced Sand	134
4.2.1 Shear stress versus horizontal displacement curves	134
4.2.2 Shear strength envelope and parameters	137
4.2.3 Volumetric strain response	137
4.3 Direct Shear Tests on Reinforced Sand Specimens	141
4.3.1 Shear stress versus horizontal displacement curve	141
4.3.2 Shear strength envelope and parameters	144
4.3.3 Volumetric strain response	146
4.4 Discussion	149
4.4.1 Effect of Fibers on the Shear Strength of Sandy Soil	149
4.4.2 Fibers Effect on the Volumetric Response	156
4.4.3 Strength and Dilation of Sandy Soil	158
4.4.4 Fibers Effect on the Initial Tangent Stiffness	160
4.5 Confined Compression Tests	161
4.5.1 Vertical stress-vertical strain curves	161
4.5.2 Effect of fibers inclusion on the constrained deformation mo	dulus1 <i>6</i>

4.6 Summary	164
5. Plate Load Test on Fiber-Reinforced Soil	247
5.1 Introduction	247
5.2 Properties of Materials Used in Plate Load Test and Program	248
5.3 Preparation of Test Pits	249
5.4 Test Setup and Procedures	251
5.5 Shear Strength and Deformation Parameters	253
5.5.1 Direct shear laboratory tests	253
5.5.2 Confined compression laboratory tests	254
5.6 Plate Load Test Results	255
5.6.1 Bearing capacity calculation	255
5.6.2 Plate settlement results and analysis	258
5.6.3 Settlement profile around the plate	261
5.7 Summary and Discussion	262
6. Summary, Conclusions and Recommendations for Future Resresch	. 283
6.1 Summary	283
6.2 Conclusions	284
6.3 Recommendations for Future Studies	288
List of References	290

List of Tables

Table 2-1: Comparsion between different results for randomly-distributed fiber-reinforced soil
Table 2-2: Summary of triaxial tests results on fiber-reinforced sand (modified after Chen and Loehr, 2008)
Table 3-1: Properties of sand
Table 3-2: Properties of RHEOFIBRE
Table 3-3: Specimens' codes and properties for shear strength tests111
Table 3-4: Specimens' codes and properties for settlement tests
Table 4-1: Test results and shear strength parameters for unreinforced specimens
Table 4-2: Values of maximum dilation angle for unreinforced specimens.
Table 4-3: Test results and shear strength parameters for reinforced specimens with fiber content 0.5%
Table 4-4: Test results and shear strength parameters for reinforced specimens with fiber content 1.0%
Table 4-5: Values of maximum dilation angle for reinforced specimens $(\mu=0.5\%)$
Table 4-6: Values of maximum dilation angle for reinforced specimens $(\mu=1.0\%)$

Table 4-7: Relationship between peak friction angle and relative density 172
Table 4-8: maximum friction angle to maximum dilation angles
relationships for various fiber and moisture contents
Table 4-9: constrained modulus of tested specimens tested in confined test
Table 5-1: Properties of sand used in plate load test
Table 5-2: Sand cone test results on sand layers in unreinforced pit265
Table 5-3: Constrained moduli of the lab and PLT sands
Table 5-4: Elastic modulus from PLT and oedometer test for the
unreinforced test pit
Table 5-5: Elastic modulus from PLT and oedometer test for the reinforced
test pit