Osteoporosis as a Manifestation of Endocrine Diseases

Essay

Submitted for partial fulfillment of the Requirements of master degree in **Internal Medicine**

Wy
Noha Reda Abd Elmongy
M.B.B.CH

Under Supervision of

Prof. Dr. Mohamed Salah Eldeen Abd El-baky

Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Dr. Samah Abd El-Rahman El-Bakry

Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Dr. Sherin Mohamed Hosney

Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2015

Acknowledgement

First and foremost I feel always indebted to ALLAH, the Most Beneficent and Merciful, Thanks to ALLAH.

I would like first to express my sincere gratitude and thankfulness to my **Prof. Dr. Mohamed Salah Eldeen Abd El-baky**, Professor of Internal Medicine and Rheumatology, Faculty of Medicine – Ain Shams University, for his generous supervision, it is a great honor to work under his guidance and supervision.

My deep gratitude and appreciation are to **Dr. Samah Abd El-Rahman El-Bakry**, Assistant Professor of Internal Medicine and Rheumatology, Faculty of Medicine – Ain Shams University for her generous help and valuable comments throughout this work.

I can't forget to extend my thanks and appreciation to **Dr. Sherin Mohamed Hosney**, Lecturer of Internal Medicine and Rheumatology, Faculty of Medicine – Ain Shams University for her great efforts and time she has devoted to accomplish this work.

This work is dedicated to my **Parents** and my **Family**, all of whom have inspired me and whose love and support have carried me through my life.

Noha Reda Abd Elmongy

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	4
Osteoporosis	5
Osteoporosis with Diabetes Mellitus	74
Osteoporosis with Thyroid Disorders	82
Osteoporosis with Parathyroid Gland Disorders .	92
Osteoporosis with Adrenal Gland Disorders	100
Osteoporosis with Gonadal Disorders	103
Osteoporosis with Growth Hormone Disorder	111
Summary	114
References	118
Arabic Summary	•••••

List of Abbreviations

AGHD : GH-deficient

AN : Anorexia nervosa

BMD : Bone mineral density

BSAP : Bone-specific alkaline phosphataseBUA : Broadband ultrasound attenuation

CaSR : Calcium sensing receptor

cGCR : Cytosolic glucocorticoid receptor **DEXA** : Dual-energy X-ray absorptiometry

DM : Diabetes mellitusDPD : DeoxypyridinolineERs : Estrogen receptors

FDA : Food and drugs administration
FIT : Fracture Intervention Trial

Free T4 : Hypothalamic—pituitary—thyroid FSH : Follicle stimulating hormone GCs : Exogenous glucocorticoids

GH : Growth hormone

GHD : Growth hormone deficient

GIO : Glucocorticoid-induced osteoporosis

HR pQCT: High resolution peripheral quantitative computed tomography

HR-MRI: High-resolution magnetic resonance imaging

HRT : Hormone replacement therapy

HT : Hormonal therapy

IGF I : Insulin-like growth factor IIGF : Insulin like growth factor-1

IL: Interleukin

IRR : Incidence rate ratio

ISCD : International Society for Clinical Densitometry

LH : Luteinizing hormone

LRP5 : Lipoprotein receptor related protein 5

List of Abbreviations (Cont...)

mcroCT : Microcomputed tomography

M-CSF : Amacrophage colony-stimulating factor

MRI : Magnetic Resonance Imaging

NFkB : Nuclear factor kB

NICE : National Institute of Clinical Excellence

NTX : N-telopeptide (NTX)

OC : Osteocalcin

OI : Osteogenesis imperfecta

OP : Osteoporosis **OPG** : Osteoprotegerin

OST : Osteoporosis Self-assessment Tool

PBM : Peak bone mass

PD : Periodontal disease

PHPT : Primary hyperparathyroidismPMO : Postmenopausal osteoporosis

PPAR : Peroxisome proliferator-activated receptor

PTH : Parathyroid hormone

PTH1R : Parathyroid hormone receptor-1

PVN : Paraventricular nucleus

QCT : Quantitative computed tomography

QUI : Quantitative ultrasound indexQUS : Quantitative ultrasonographyRANK : Receptor activator of NF KB

RANKL : Receptor activator of nuclear factor-κ B-ligand

SAXS : Small Angle X ray Scattering

SERMs : Selective estrogen receptor modulators

SNPs : Single nucleotide polymorphisms

SOS : Speed of sound

SOST : Sclerostin

STAT : Signal transducers and activators of transcription

List of Abbreviations (Cont...)

 T_3 : Triiodothyronine T_4 : Tetraiodothyronine

TGFb : Transforming growth factor b **TNF-alfa** : Tumor necrosis factor alfa

TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand

TRH : Thyrotrophin-releasing hormone

TRs : Thyroid receptors

TSH : Thyroid stimulating hormone

TSHR : TSH receptor

ucOC : Undercarboxylated osteocalcin

vBMD : volumetric BMD

μCT : Micro-CT

3-D : Three-dimensional

List of Tables

Eable N	o. Eitle	Page No.
Table (1):	Major Causes of Secondary Osteoporos	is12
Table (2):	Risk factors predisposing to low BMD.	20
Table (3):	Assessment of bone quality	44
Table (4):	Bone tumor markers	47
Table (5):	Laboratory evaluation for secondary ca Osteoporosis	
Table (6):	Drugs classification for osteoporosis	61
Table (7):	Therapeutic agents available for osteomode of action and fracture efficacy	•

List of Figures

Figure No.	Eitle	Page	No.
Figure (1):	Schematic representation of the multicellular unit of the bone remode cycle	delling	22
Figure (2):	Scanning electron micrographs		27
Figure (3):	Bone changes with ageing. High-reso peripheral quantitative CT images distal radius in	of the	27
Figure (4):	Control of Mineral Metabolism ParathyroidHormone		30
Figure (5):	Regulation of calcitonin and PTH secre	etion.	33
Figure (6):	WHO Diagnostic Classification of Oste	oporos	is 37
Figure (7):	Determinants of bone quality;		43
Figure (8):	In vivo high resolution MR images		49
Figure (9):	Consequences of vitamin D deficiency	•	59
Figure (10):	Targets of antiosteoporotic drugs; osteoprotegerin, RANK nuclear factor RANKL nuclear factor-k B-ligand	r-k B,	65
Figure (11):	Skeletal complications of diabetes me Osteoporotic fractures in patients diabetes mellitus	with	80
Figure (12):	Osteoblasts synthesize proteinaceous recomposed mostly of type I collagen, to resorption pits.	fill in	87
Figure (13):	Dual anabolic and catabolic effects of on the skeleton		94

Introduction

Steoporosis, defined as a skeletal disorder characterized by compromised bone strength predisposing to an increased risk of fracture, is a major public health problem throughout the world. Elderly people are the fastest growing population in the world and, as people age, bone mass declines and the risk of fractures increases (*Lane*, 2006).

This disease is considered a "silent thief" that generally does not become clinically apparent until a fracture occurs. Osteoporosis represents an increasingly serious problem in the United States and around the world. Many individuals, male and female, experience pain, disability, and diminished quality of life as a result of having this condition. The economic burden the disease imposes is already considerable and will only grow as the population ages (*Ahmed and Elmantaser*, 2009).

Osteoporosis has been divided into several classifications according to etiology and localization in the skeleton. Osteoporosis is initially divided into localized and generalized categories. These two main categories are classified further into primary and secondary osteoporosis (*Orwoll et al.*, 2008).

Variations in the alimentary and endocrine systems in both women and men have a fundamental role in the development of osteoporosis: if these variations are combined with an inappropriate life style (eg, inadequate physical exercise, alcohol abuse or smoking), pathologies such as hyperparathyroidism, thyrotoxicosis and/ or the use of drugs such as antipsychotics or corticosteroids, the risk of osteoporosis is increased (*Lanzini et al.*, 2006).

Osteopenia and osteoporosis are among the complications of Diabetes mellitus (DM) as it may alter bone remodeling. Moreover, DM increases the risk and severity of chronic inflammatory periodontal disease, in which bone resorption occurs (*Gracia-Hernandez et al.*, 2012).

Thyroid diseases have widespread systemic manifestations including their effect on bone metabolism. On one hand, the effects of thyrotoxicosis including subclinical disease have received wide attention from researchers over the last century as it an important cause of secondary osteoporosis. On the other hand, hypothyroidism has received lesser attention as its effect on bone mineral metabolism is minimal (*Dhanwal*, 2011).

Exogenous glucocorticoids (GCs) are used as antiinflammatory and immunosuppressive drugs in the treatment of a wide range of rheumatic and other inflammatory diseases. However, their pleiotropic effects may lead to numerous adverse effects such as unwanted metabolic effects and osteoporosis (*Strehl et al.*, 2011).

The presence of osteoporosis in men is correlated mainly with the effect of growth hormone (GH) and hypogonadism. GH stimulates the increase in muscle mass and the formation of

bone tissue. It was stated that GH replacement improves target organ sensitivity to parathyroid hormone (PTH), PTH circadian rhythm, calcium and phosphate metabolism, bone turnover, and bone mineral density (BMD) in adult GH-deficient (AGHD) patients. In postmenopausal women with established osteoporosis, GH and insulin like growth factor-1 (IGF-1) concentrations are low, and administration of GH has been shown to increase bone turnover and BMD, but the mechanisms remain unclear (*Joseph et al.*, *2008*).

Aim of the Work

The aim of this review is to discuss the update in the causes and pathogeneses of osteoporosis associated with endocrinal disorders.

Osteoporosis

Definition:

Steoporosis is an asymptomatic systemic disease characterized by deterioration of the microarchitecture of bone and low bone mass, which ultimately predisposes patients to fractures secondary to low-energy mechanisms (*McKean et al., 2013*). Osteoporosis takes place when bone resorption by osteoclasts far exceeds bone formation by osteoblasts (*Muhammad et al., 2012*).

Osteoporosis remains a major public health problem through its association with fragility fractures. Despite the availability of preventative therapeutic agents, the incidence and its associated costs continue to rise globally. Understanding osteoporosis epidemiology is essential to developing strategies to reduce the burden of osteoporotic fracture in the population (*Cole et al.*, 2008).

Osteoporotic fractures are associated with increased mortality and major morbidity, including loss of independence, reduced function and mobility, pain, kyphosis and respiratory compromise (*Walsh & Eastell*, 2013).

Epidemiology

It is a common disease affecting 8 million women and 2 million men in the United States and leading to more than 2 million osteoporotic fractures annually (*Diab and Watts*, *2013*).

About half of the women at age of 50 or older will suffer an osteoporotic fracture during their lifetime, causing disability, increased mortality, and financial burden, Fragility fractures occur less commonly in men, but they are associated with a higher mortality than in women (*Mazziotti et al.*, 2012).

The social and economic burden of osteoporosis is increasing steadily because of the aging of the world population. Currently affecting more than 10 million people in the United States, osteoporosis is projected to impact approximately 14 million adults over the age of 50 by the year 2020 (*Lane*, 2006).

Epidemiological studies have recently reported on the burden of hip and vertebral fractures in Mexico. It is estimated that 1 in 12 Mexican women and 1 in20Mexican men will have a hip fracture after the age of 50 (lifetime risk probability of 8.5 and 3.8%, respectively) Compared to other countries, Mexico shows intermediate hip fracture incidence rates12 (agestandardized incidence rates of 203 and 108 per 100, 000 person years in women and men, respectively) (*Clark et al., 2013*).

During early adult life there are actually more fractures in men than women; most of these fractures are traumatic. After the menopause, women have an increasingly greater risk of osteoporotic fracture. This increased risk is related to the dramatic loss of estrogen with the cessation of menses. In men, there is analogous dramatic decrease in androgen secretion (*Adler*, 2013).