NEW ERA OF SYMPATHECTOMY

Essay Submitted for partial fulfillment of the master Degree in general surgery By

Mohamed Saad Abd Elaziz Kolkila M.B., B.CH. (cairo university)

supervised

Prof. Dr. Alaa El Din Ismail Abdel Mottaleb professor of general surgery faculty of medicine, ain shames university

Dr.Hisham Abd Alsalam Mohamed Simry

Assistance professor of neurosurgery faculty of medicine, ain shames university

Dr. Osama Fouad Mohammed Abd El Gawad

Assistance professor of general surgery faculty of medicine, ain shames university

Faculty of Medicine Ain Shams University

بسم الله الرحمن الرحيم

"سنريهِمْ آيَاتِنا فِي الآفاق وَفِي أنفسِهِمْ حَتى يَتبَيَّنَ لهُمْ أَنَّهُ الْحَقُ أَوَ لَمْ يَكْفِ بِرَبِّكَ أَنَّهُ عَلَى كُلِّ شَيْءٍ شَهِيدٌ"

صدق الله العظيم

سورة فصلت " آية ٣٥٣

AcknowLedgments

"First of all, I am deeply thankful to GOD by the grace of whom this work was possible"

I have been most fortunate in the expert assistance renderedme by many members of the general surgery & Neurosurgery DepartmentFaculty of Medicine- Ain Shams University.

I owe a particular debt to Prof. DR.. Alaa ElDin Ismail Abdel Mottaleb Professor of General Surgery- Faculty of Medicine- Ain Shams University, that I have had the privilege to work under his kind and indispensable skillful supervision.

I offer my salute to Ass. Prof., Hisham Abd Alsalam Mohamed Simry Assistant Professor of Neurosurgery- Faculty of-Medicine- Ain Shams University, for his care, concern and uncompromising standards of excellence.

Special acknowledgment is owed to, Ass. Prof Osama Fouad
MohammedAbdEl Gawad Ass. Prof of General Surgery - Faculty of MedicineAin ShamsUniversity, for his efforts that maintained the progress of the
work and ultimately put the work together.

My personal gratitude is due Prof. DR .adel hessin elhakim, the chief of our neurosurgery department &also the chief of neurosurgery department –faulty of medicine-ain shams university, for helping me to develop as a neurosurgen and as a person, and for his personal assistance offered by him, is never to be forgotten.

And finally, I acknowledge my family, my wife and particularly to my faithful colleagues for their unconditional support of this task and endless blessings they bring me.

CONTENTS

Acknowledgment	
Contents	
List of figures	
List of tables	
\dagger.introduction	1-4
۲.Historical review	٣-٥
r.anatomy of sympathetic chain	7-79
f.physiology of the sympathetic chain	٣٠_٤٢
o.indications for sympathectomy	٤٣-٥١
i.techniques to sympathectomy	771-70
Y.surgical results and complications of sympathectomy	177-122
Summary	150_157
Refrences	1 & ٧- ١٦ ١
Arabic summary	

List of figures

figure	illustrating	page
1	General arrangement of the	٨
	somatic&autonomic part of	
	the the nrvous system	
۲	Anatomic organization	17
٣	Cranial portion of the	١٣
	sympathetic trunk	
٤	Cervical sympthetic ganglion	١٤
٥	Detailed relations of the	١٧
	sympathetic cervical trunk	
	&ganglia	
٦	A-P relations of the thoracic	11-19
	sympathetic trunk &ganglia	
٧	Sympathetic trunk	71
	plexuses(thoracic&abdominal)	
	anterior view	
٨	Sympathetic plexuses side	7.7
	view	
٩	Lumber sympathetic chain	70
١.	Intercommunicating branches	77
	around thoracic aorta &its	
	branches	
11	Sympathetic chainin pelvis	۲۸
١٢	Section of autonomic ganglia	۲٩
	stained with H&E.	
١٣	General organization of	٣١
	autonomic nervous system	
١٤	Nerve connections between	٣٢
	spinal cord, sympathetic	
	chain, spinal nerves, peripheral	
	sympathetic chain	
10	Mechanism of denervation	٤٠
	hypersensetivity	
١٦	3.	٤٣
, ,	Clinical picture of palmar	-
١٧	hyperhydrosis	٤٥
1 1	Mechanism of reflex	. -
١٨	sympathetic dystrophy	٥٢
1/1	Position during open cervical	
١٩	sympathectomy	٥٣
17	Cutting of clavicular head of	01
	sternocliomastoid muscle	

۲.	Anatomy of cervical chain vits	0 £
	relations	
71	Techniques of	00
	dissection&clipping of the	
	sympathetic chain	
77	Position of transaxillary	٥٦
	approach	
74	Incision along the line of the	०७
	second intercostal space	
7 £	Sympathetic chain beneath	٥٧
	the parietal pleura	
70	Supine position in lumber	٥٨
	sympathectomy	
77	Sympathetic chain	٦.
	mobilization with nerve hook	
77	Endoscopic video camera	٦٦
۲۸	Fibre optic bundle with	٦٧
	integrated irrigation	
	mechanism	
۲۹	Soft tissue dissection tools	٧.
٣.	Operating room setup	٧١
٣١	Position during thoracoscopy	٧٣
٣٢	" Portals used in endoscopic	٧٥
	·	
٣٣	thoracic sympathectomy	٧٦
	Position of the sympthetic	, ,
Ψ٤	thoracic chain	VV
, 2	Grasping &mobilisation of the	v v
	sympathetic chain by	
٣٥	endoscopic forceps	٧٨
10	Tansection of the sympathetic	V /
	chain	
٣٦	Final apperance of	٧ ٩
	sympathetic chain after	
	meticulous hemostasis was	
	achieved	
٣٧	Lateral decubitus position in	٨٥
	endoscopic extraperitoneal	
	approach	
٣٨	Stellate ganglion block	٩.
	percutanoeus	
٣٩	Image guided stellate	9 £
	ganglion block	

٤٠	Posterior approach to upper	97
	thoracic sympathetic block	
٤١	Intrapleural infusion for	99
	thoracic sympathetic block	
٤٢	Midthoracic sympatheic block	١
٤٣	Radiofrequency percutanoeus	١٠٤
	thoracic sympathetic block	
٤٤	Radiofrequency lesion of a	1.0
	thoracic nerve root	
٤٥،٤٦	c.t guided Radiofrequency	1 • 9
	sympathetic block	
٤٧	Splanchnic nerves	11.
٤٨	Surfac landmark for celiac	117
	plexus block &cross-section	
	of celiac plexus block	
٤٩	C.t radiographs of celiac	117
	plexus block	
٥,	Lateral approach for lumber	17.
	sympathetic block	
01	Paramedian approach to the	177
	sympathetic block	
٥٢	Correct linear spread of	170
	contrast,fluorscopic view in	
	lumber chemical sympathetic	
	neurolysis	
٥٣	x-ray needle placement	١٢٦

List of tables

figure	demonstrating	page
1	Showes	11
	segmmental	
	sympathetic	
	supplies	
۲	Autonomic effect on	٣٨
	various organs of	
	the body	
٣	Case reports of	١٣٨
	major complications	
	during thoracic	
	endoscopic	
	sympathectomy	

Introduction

Introduction

The sympathetic division of the autonomic nervous system is the portion that equips the body to respond maximally during crisis conditions. Such reflexes, which prepare the individual for "fight or flight," include papillary dilation, deepened respiration, increased heart rate, and cutaneous vasoconstriction (*Willd-ris and Rengachary*, 1997).

Surgeons first employed sympathectomy during, the last decade of At that time, the 19th Century. Jonnesco performed cervical ganglionectomies for the treatment of epilepsy, exophthalmic goiter and (somewhat later), angina pectoris. During these same years, Jaboulay and later LeRiche carried out sympathectomies for the relief of trophic ulcers in the lower extremity. Further interest in the operation was stimulated by the work of Royleand Hunter, who believed that sympathectomy would relieve spasticity. Although their theory was proved erroneous, observations of the patients who undergone sympathectomy led to increased use for the operation for vasoactive disease. Subsequently, this procedure was used to treat a wide variety of conditions, including angina pectoris, hypertension, and vascular disease of large and small vessels. Currently, many of these conditions are no longer indication for sympathectomy, probably because new methods of treatment have been developed as in the case of angina pectoris and hypertension (Bunker et al., Y. Y).

Although the early enthusiasm for sympathectomy has waned, as in cases of spastisty, epilepsy, transient cerebral ischemia, migraine, hypertension, angina pectoris, and glaucoma. Nevertheless, sympathectomy remains as a uniquely effective treatment for a number of distressing

١

Introduction

disorders as in cases of causalgia, essential hyperhidrosis, vascular occlusive states, Raynuad's disease and visceral pain (pancreatic carcinoma, chronic pancreatitis), and shoulder-hand syndrome (willd-ris and Rengachary, 1997).

At present, the use of sympathectomy is limited to a handful of conditions, but remains an important surgical technique because it is uniquely effective in hyperhidrosis, major causalgia, and some forms of minor causalgia, shoulder hand syndrome and certain pain of visceral origin, sympathectomy is also used for the treatment of ischemic ulceration, Raynaud's phenomenon, rest pain, and other sequelae of vascular insufficiency (*Rapee and Spence*, Y···).

A variety of surgical techniques have been described for sympathetic denervation. These include: (¹) preganglionic cervicodorsal sympathectomy, either through: supraclavicular, transaxillary anterior transpleural (Thoracotomy) and several posterior thoracic approaches. (¹) operative method for lumbar sympathectomy. (˚) Endoscopic method. (٤) percutaneous rediofrequency sympathectomy. (°) chemical method (Saeed et al., ¹··¹).

Historical Review

Historical Review

Galen's many contributions to the field of anatomy include the earliest history of the sympathetic nervous system. A text published in 1014 describes a nerve trunk along the rib heads that communicates with the spinal cord. He also noted three enlargements along this nerve trunk and described a ganglion at the entrance of the nerve into the abdomen. Although Galen erroneously thought this nerve was a branch of the vagus nerve, he initiated a concept that sympathy or consent existed between different parts of the body. Later anatomists described the vagus nerve and sympathetic trunk as a single functional entity until Estienne () correctly identified them as individual anatomical structures. Window () was the first to term the paravertebral chain "the great sympathetic nerve." Later, Whytt) wrote that all sympathy or consent must be referred to the central nervous system (CNS) initially, because it occurred between body parts without interconnecting nerves (Bonica, 1907).

The $\$ ^{\}^{\}th century brought meticulous and extensive dissections by men like *Bichat*, *Ehrenberg*, *Red*, *Meissner*, *and Auerbach*. Numerous publications during this period helped to essentially complete the anatomical understanding of the sympathetic nervous system. *Lengley* and *Dickinson* ($\$ ^{\}^{\}^{\}^{\}) proposed the name autonomic nervous system and differentiated the functional effects of the thoracolumbar and craniosacral outflows, subsequently naming the latter system parasympathetic (*Bonica*, $\$ ^{\}^{\}^{\}^{\}^{\}^{\}}).

The beginning of the Y•th century brought extensive research examining the role of sympathetic nerves and the transmission of visceral

pain. *Jonnesco* first demonstrated that visceral pain in humans was transmitted by the sympathetic nervous system when he resected the stellate ganglion and successfully relieved a patient of angina pectoris (*White and Sweet et al.*, 1900).

Whereas *Koller* first demonstrated the local anesthetic properties of cocaine in 1845, *Sellheim* first used a Paravertebral approach in 1940 to inject somatic Spinal nerves of surgical anesthesia. Techniques were later refined to allow blocks of parts of the sympathetic nervous system. *Kappis* and others in 1947 began to use Paravertebral sympathetic blocks as a therapeutic measure for severe pain and certain visceral pain (*Bonica*, 1946).

During the 'q' s, *Leriche* studied the function of the stellate ganglion and subsequently reported superb pain relief from causalgia and reflex sympathetic dystrophy with stellate ganglion blocks in the upper extremities and lumbar sympathetic blocks in the lower extremities. A large group of patients injured in World War II, with causalgia and reflex sympathetic dystrophy were successfully managed with sympathetic nerve blocks (*Rauck*, Y...).

Stallate ganglionectomy for the treatment of epilepsy was performed over sympathectomy by periarterial stripping, as reported by *Jaboulay* 1499 and *Leriche* in 1917 become popular for the treatment of vasospastic disorders of the extremities. Although *Leriche* reported lower extremities hyperemia following this form of sympathectomy (*Bay and Dohn*, 1997).

Tivilkinson described posterior percutaneous radiofrequency ablation of the thoracic ganglia which was subsequently performed by *C'huang* and colleague stereotacticaly in ۱۹۸۸. The tarnsthoracic approach to the upper sympathetic chain using video assisted endoscopic techniques is a well

tolerated and effective method to disrupt the sympathetic supply to the upper extremities, and likely to replace other more invasive open posterior or anterior surgical procedures (*Wilkinson*,).

The debate over the extent of tissue that must be removed for adequate sympathectomy has been at least as active as that over the appropriate approach for the operation in the past, treatment failures have been attributed to hypersensivity for epinephrine following denervation that might be an incomplete denervation or the development of collateral pathways, as a result multiple versions of upper extremity sympathectomy have been proposed (*Rothenthal and Dickman et.*; 1999)

Laboratory indicate T۲ Recent clinical and findings that ganglionectomy is likely sufficient to treat palmer hyperhydrosis. If the hyperhydrosis includes the axilla, the T^r and possibly T^t and T^o ganglia should be removed as well. To treat minor causalgia or hyperhydrosis affecting the upper extremity, removal T^{\gamma} and T^{\gamma} ganglia along with the adjacent sympathetic nerve fibers. Removal of stellate ganglion rarely improves outcome, and it leads to Homer's syndrome in most cases. For Other disorders that respond to disruption of the sympathetic outflow respondat least partially to removal or ablation of the sympathetic chain and the T⁷ to T² ganglia (Bay and Dohn, 1997).

Since World War II, refinements have continued in nerve block techniques used in the sympathetic nervous system. Needle design has improved, new local anesthetics have been developed, and a rebirth of interest in regional anesthetic techniques has helped to popularize the clinical use of sympathetic nerve blocks (*Rauck*, Y···).