

Geometric Analysis of Root Canal Preparation by Three New Rotary Ni-Ti Systems in Rotation and Reciprocation

(An In Vitro Study)

Thesis Submitted to Endodontic Department, Faculty of Dentistry, Ain Shams University

In partial Fulfillment of the Requirement for Master's Degree in Endodontics

By

Mahmoud Mohammed Eid Mahgoub

B.D.S Faculty of Dentistry, Ain Shams University (2007)

Faculty of Dentistry Ain Shams University 2016

Supervisors

Dr. Salma Hassan El Ashry

Professor of Endodontics Faculty of Dentistry Ain Shams University

Dr. Ahmed Abd El Rahman Hashem

Professor of Endodontics Faculty of Dentistry Ain Shams University بسم الله الرحمن الرحيم (رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعُمْتَ عَلَيَ وَعَلَى وَالِدَيَّ وَعَلَى وَالِدَيَّ وَعَلَى وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وَأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ وَادْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ وَادْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

آية: ١٩ سورة النمل

Dedication

I would like to dedicate this work to my parents, wife and my lovely daughter

Acknowledgment

I express my profound sense of reverence to my supervisor **Prof. Salma El Ashry** Professor of Endodontics, Faculty of Dentistry, Ain Shams University, for the time and guidance she devoted to me.

I express my deepest gratitude to **Prof.**Ahmed Abd El Rahman Hashem Professor of Endodontics, Faculty of Dentistry, Ain Shams University for his constant guidance, support, motivation. and untiring help during this work. His depth knowledge has been extremely beneficial for me.

List of content	Page
List of figures	II
List of tables	III
Introduction	1
Review of literature	3
Aim of the study	34
Materials and Methods	35
Results	49
Discussion	80
Summary and Conclusions	88
Recommendation and future research	90
References	91
Arabic Summary	1

List of Figure

Figure No.	Title	Page
figure 1	Diagram showing schneider's method for determination of angle of curvature.	36
figure 2	showing 10 specimens aligned in arch shape in rubber base impression	38
figure 3	a and b showing pre-operative and post-operative cbct at level 2.5 mm	46
figure 4	a and b showing pre-operative and post-operative cbct at level 5 mm	47
figure 5	a and b showing pre-operative and post-operative cbcy at level 8 mm	47
figure 6	Bar chart representing comparison between canal transportation after using the three systems	51
figure 7	Bar chart representing comparison between canal transportation with the two motions	53
figure 8	Bar chart representing comparison between canal transportation at different root levels.	56
figure 9	Bar chart representing comparison between canal transportation after using the three systems regardless of motion and root level	58
figure 10	Bar chart representing comparison between CR after using the three systems	61
figure 11	Bar chart representing comparison between CR with the two motions	63
figure 12	Bar chart representing comparison between CR at different root levels	66
figure 13	Bar chart representing comparison between CR after using the three systems regardless of motion and root level	67
figure 14	Bar chart representing comparison between directions of transportation after using the three systems	70
figure 15	Bar chart representing comparison between directions of transportation with the two motions	73
figure 16	Bar chart representing comparison between direction of transportation at different root levels	76
figure 17	Bar chart representing comparison between % changes in canal curvature after using the three systems	77
figure 18	Bar chart representing comparison between % changes in canal curvature with the two motions	79

List of Table

Table No.	Title	Page
table 1	The mean, standard deviation (SD) values and results of Kruskal-Wallis test for comparison between canal transportation after using the three systems	50
table 2	The mean, standard deviation (SD) values and results of Mann-Whitney U test for comparison between canal transportation with the two motions	53
table 3	The mean, standard deviation (SD) values and results of Friedman's test for comparison between canal transportation at different root levels	56
table 4	the mean, standard deviation (sd) values and results of kruskal-wallis test for comparison between canal transportation after using the three systems regardless of motion and root level	57
table 5	The mean, standard deviation (sd) values and results of kruskal-wallis and mann-whitney u tests for comparison between cr after using the three system	60
table 6	The mean, standard deviation (SD) values and results of Mann-Whitney U test for comparison between CR with the two motions	63
table 7	The mean, standard deviation (SD) values and results of Friedman's test for comparison between CR at different root levels	66
table 8	The mean, standard deviation (SD) values and results of Kruskal-Wallis test for comparison between CR after using the three systems regardless of motion and root level	67
table 9	the frequencies (n), percentages (%) and results of chi-square test (or fisher's exact test) for comparison between direction of transportation after using the three systems	69
table 10	The frequencies (n), percentages (%) and results of Chi-square test (or Fisher's Exact test) for comparison between direction of transportation with the two motions	72
table 11	The frequencies (n), percentages (%) and results of Friedman's test for comparison between directions of transportation at different root levels	75
table 12	The mean, standard deviation (SD) values and results of Kruskal-Wallis test for comparison between % changes in canal curvature after using the three systems	77
table 13	The mean, standard deviation (SD) values and results of Mann-Whitney U test for comparison between % changes in canal curvature with the two motions	78

List of tables

Table no.	Table title	Page no.
Table 1	The mean, standard deviation (SD) values and results of Kruskal-Wallis test for comparison between canal	46
	transportation after using the three systems	
Table 2	The mean, standard deviation (SD) values and results of Mann-Whitney U test for comparison between canal transportation with the two motions	47
Table 3	The mean, standard deviation (SD) values and results of Friedman's test for comparison between canal transportation at different root levels.	49
Table 4	The mean, standard deviation (SD) values and results of Kruskal-Wallis test for comparison between canal transportation after using the three systems regardless of motion and root level	50
Table 5	The mean, standard deviation (SD) values and results of Kruskal-Wallis and Mann-Whitney U tests for comparison between CR after using the three systems	52
Table 6	The mean, standard deviation (SD) values and results of Mann-Whitney U test for comparison between CR with the two motions	54
Table 7	The mean, standard deviation (SD) values and results of Friedman's test for comparison between CR at different root levels	56

Table 8	The mean, standard deviation (SD) values and results	
	of Kruskal-Wallis test for comparison between CR	57
	after using the three systems regardless of motion and	
	root level	
Table 9	The frequencies (n), percentages (%) and results of	
	Chi-square test (or Fisher's Exact test) for comparison	58
	between direction of transportation after using the	
	three systems	
Table 10	The frequencies (n), percentages (%) and results of	
	Chi-square test (or Fisher's Exact test) for comparison	52
	between direction of transportation with the two	
	motions	
Table 11	The frequencies (n), percentages (%) and results of	
	Friedman's test for comparison between direction of	63
	transportation at different root levels	
Table 12	The mean, standard deviation (SD) values and results	
	of Kruskal-Wallis test for comparison between	65
	changes in canal curvature after using the three	
	systems	
Table 13	The mean, standard deviation (SD) values and results	
	of Mann-Whitney U test for comparison between	63
	changes in canal curvature with the two motions	

List of Figures

Table no.	Table title	Page no.
Figure 1	Diagram showing Schneider's method for determination of angle of curvature.	36
Figure 2	Showing 10 specimens aligned in arch shape in rubber base impression	37
Figure 3	(A) and (B) showing preoperative and post operative CBCT at level 2.5mm	44
Figure 4	(A) and (B) showing preoperative and post operative CBCT at level 5mm	45
Figure 5	(A) and (B) showing preoperative and post operative CBCT at level 8mm	45
Figure 6	The root curvature radius based on 3 mathematical points can be determined in both apical and coronal directions.	47
Figure 7	Bar chart representing comparison between canal transportation after using the three systems	46
Figure 8	Bar chart representing comparison between canal transportation with the two motions	48
Figure 9	Bar chart representing comparison between canal transportation at different root levels	50
Figure 10	Bar chart representing comparison between canal transportation after using the three systems regardless of motion and root level	51
Figure 11	Bar chart representing comparison between CR after using the three systems	52
Figure 12	Bar chart representing comparison between CR with the two motions	54

Figure 13	Bar chart representing comparison between CR at different root levels	56
Figure 14	Bar chart representing comparison between CR after using the three systems regardless of motion and root level	57
Figure 15	Bar chart representing comparison between direction of transportation after using the three systems	59
Figure 16	Bar chart representing comparison between direction of transportation with the two motions	62
Figure 17	The frequencies (n), percentages (%) and results of Friedman's test for comparison between direction of transportation at different root levels.	63
Figure 18	Bar chart representing comparison between changes in canal curvature after using the three systems	65
Figure 19	Bar chart representing comparison between changes in canal curvature with the two motions	62

One of the most important factors in the success of root canal treatment is complete biomechanical cleaning of the canal system. This includes the removal of the pulp and organic tissue, infected dentin, bacteria and their by-products, while providing adequate canal shape for proper obturation. This is fulfilled by both the effect of the chemical irrigation as well as the mechanical action of the used files.

Traditionally, shaping of root canals was achieved by the use of stainless steel hand files. However upon the introduction of nickel titanium (Ni-Ti) instruments, many of the disadvantages of stainless steel files were overcome owing to their flexibility. Ni-Ti also tend to maintain the original canal shape during preparation and have reduced tendency to transport apical foramen.

Inspite of their advantages, the Ni-Ti cutting efficiency was found to be less than the stainless steel, and the use of electric motors to rotate the files at higher speeds as opposed to manual rotation-was then introduced to improve Ni-Ti cutting rate.

Although rotational motion is commonly used for driving the files in the canals, recently there has been an increased interest and renewed focus on reciprocation, which may be defined as any repetitive back and froth motion.

However, all current market versions of reciprocating motors produce a file movement where there is the clockwise and counter clockwise degree of rotation. On combining the reciprocation motion along with the newly introduced Ni-Ti rotary systems, better preservation of the canal anatomy could be attained.

Techniques that allow teeth canals to be evaluated without destroying the specimens have been suggested to compare root canal shape prior to and after instrumentation. With the use of cone beam computed tomography (CBCT) root canal instrumentation and preparation methods can be compared.

Therefore conducting a study to evaluate the rotary Ni-Ti files in a rotation and reciprocation motion that could affect the canal transportation and centering ability was thought to be of value.

Review of literature

Root canal instrumentation is accomplished by the use of endodontic instruments and irrigating solutions under aseptic working conditions. Root canal instrumentation may be carried out using hand-held or engine-driven (rotary) instruments. The ideal preparation should possess a progressive taper with the original anatomy of the canal maintained; the canal should get narrower as it goes from coronal to apical with the end of the preparation in the original position of the apical foramen and not over enlarged (**Schilder 1974**) ⁽¹⁾. Using stainless steel files in canals displaying even the slightest complexity showed tendency to cause various procedural errors such as ledge formation, midroot strip perforations and transportations. These complications would compromise the ability to adequately seal the canal to guarantee long-term success of the treatment.

Bertrand et al ⁽²⁾ evaluated curved root canal preparations using HERO 642 rotary nickel-titanium instruments by the Bramante method in twenty four canals with curvature greater than twenty. Roots were embedded in clear resin using a plaster mould and cross-sectional cuts were made in apical, middle and coronal thirds of each root. The control group was prepared using stainless