Ain Shams University
Faculty of Engineering
Electrical Power & Machines Department

Voltage Stability in Power Systems with Different Wind Energy Generating Capacities

\underline{By}

Eng. Marwa Salah Hassan H. El-Sabaa

A THESIS

Submitted in partial fulfillment of the requirements for the degree of PhD in Electrical Engineering

Supervised by:

Prof. Dr. Mohamed Abdel-latif Badr Prof. Dr. Abla Soliman Attia Dr. Rania AbdelWahed Sweif Dr. Iman Hassan Beshr

Cairo 2014

APPROVAL SHEET

Voltage Stability in Power Systems with Different Wind Energy Generating Capacities

<u>By</u>

Eng. Marwa Salah Hassan H. El-Sabaa

A THESIS

Submitted in partial fulfillment of the requirements for the degree of PhD in Electrical Engineering

Approved by:

Signature

Prof. Dr. Ahdab M. Kamel Elmorshedy Faculty of Engineering –Cairo University

Prof. Dr. Ahmed Rezk Abou ElwafaFaculty of Engineering –Ain Shams University

Prof. Dr. Mohamed Abdel-latif Badr Faculty of Engineering –Ain Shams University

Date: / / 2014

SUPERVISION SHEET

Voltage Stability in Power Systems with Different Wind Energy Generating Capacities

<u>By</u>

Eng. Marwa Salah Hassan H. El-Sabaa

A THESIS

Submitted in partial fulfillment of the requirements for the degree of PhD in Electrical Engineering

Supervised by:

Signature

Prof. Dr. Mohamed Abdel-latif Badr Faculty of Engineering –Ain Shams University

Prof. Dr. Abla Soliman AttiaFaculty of Engineering –Ain Shams University

Dr. Rania Abdel Wahed Sweif Faculty of Engineering –Ain Shams University

Dr. Iman Hassan BeshrFaculty of Engineering –Arab Academy

Date: / / 2014

Ain Shams University
Faculty of Engineering
Electrical Power & Machines Department

Voltage Stability in Power Systems with Different Wind Energy Generating Capacities

\underline{By}

Eng. Marwa Salah Hassan H. El-Sabaa

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Ph.D. in Electrical Engineering

Supervised by:

Prof. Dr. Mohamed Abdel-latif Badr Prof. Dr. Abla Soliman Attia Dr. Rania AbdelWahed Sweif Dr. Iman Hassan Beshr

Cairo 2014

AKNOWLEDGMENT

I wish to express my deep gratitude and respect to my supervisors committee: Prof. Dr. Mohamed Abdel-Latif Badr, Dr. Abla Soliman, Dr. Rania Abdelwahed, and Dr. Iman Beshr for their guidance and support. Their helpful and valuable discussions were the core reason for accomplishing this work. And I wish to thank the discussion committee: Prof. Dr. Ahdab Elmorshedy, faculty of Engineering, Cairo Univ., and Prof. Dr. Ahmed Abou Elwafa, faculty of Engineering, Ain Shams Univ.

My faithful appreciations, deep and sincere gratitude are dedicated to Prof. Dr. Mohamed Abdel-Latif Badr for his assistance, encouragement and his father's sympathies.

My very special thanks are dedicated to Dr. Rania for her close following up and continuous advice.

I'm also grateful to my colleagues and all the staff for their invaluable help and their patience and understanding all along the way.

Also, I would like to express my boundless gratitude and sincere appreciations to my mother and my father.

I would like to express my boundless gratitude and sincere appreciations to my beloved sisters and brother (Mona and Hassan), and their sons and daughter (Omar, Nour, Karim, and Ammar).

I would like to express my special concerns and boundless gratitude to my beloved little sister Toota (Hadeer).

Finally, I would like to express my true love to my darling husband Amr.

I wish to present my success

To My Parents...

Table of Contents

List of Abbreviations	4
List of Figures	5
List of Tables	7
ABSTRACT	9
CHAPTER 1	11
INTRODUCTION	11
1.1 Background and motivations	11
1.2 Contribution	13
1.3 Thesis outline	13
1.4 Publications	15
CHAPTER 2	16
LITRATURE REVIEW	16
2.1 Introduction	16
2.2 Power system stability	16
2.2.1 Definition and classification of power system stability	16
2.2.2 Voltage Stability Problem	17
2.2.2.1 Analysis of Voltage Stability	18
2.2.2.2 Power Flow Analysis	20
2.3 Renewable Energy Sources and Technologies	21
2.3.1 Water Energy Technology	23
2.3.1.1 Water Energy Conversion Technologies	23
2.3.2 Biomass Energy Technology	24
2.3.2.1 Biomass Energy Conversion Technologies	24
2.3.3 Geothermal Energy Technology	25
2.3.4 Solar Energy Technology	26
2.3.4.1 Solar Energy Conversion Technologies	26
2.3.5 Wind Energy Technology	27
2.3.5.1 Wind Energy Conversion Technologies	28
2.3.5.1.1 Wind Turbine Technologies	32
2.3.5.1.2 Remarks on Wind Energy Technologies	35
2.4 Distributed Generation Technologies	36
2.4.1 Integration of Distributed Generation to Power System	ı37

	l.1.1 eneratio	The Integration of Wind Turbine Generators as Distributed on to Power System	38
2.4.2	The	e Benefits of Integration of Distributed Generation to Power Syste	m 38
2.4.3	Opt	timal Allocation Distributed Generation Sources	39
	l.3.1 urces	Genetic Algorithms for Optimal Allocation Distributed General 40	ion
СНАРТЕ	R 3		44
PROBLEM	M FOR	MULATION	44
3.1	Introd	luction	44
3.2	Proble	em Formulation	45
СНАРТЕ	R 4		47
		DIFFERENT DISTRIBUTED GENERATOR TYPES TO THE 15-B	
4.1	Introd	luction	47
4.2	The P	roposed 15-Bus Power System	47
4.3 System	Effect	of Integrating Different Generation Units Types to a Proposed Policy on the Voltage Profile	ower
4.3.1	The	e Base Case System	50
4.3.2		nd Turbine Generators Contribution	
4.3.3	Pho	otovoltaic Contribution	56
4.3.4	Die	sel Generators Contribution	58
4.4	Comp	arison between the different Distributed Generator Types	61
4.5	Summ	nary	65
СНАРТЕ	R 5		67
THE LOS	SSES A	AND VOLTAGE PROFILE STUDY ON THE TWO CASE STUD	IES67
5.1	Introd	luction	67
5.2 levels to		of Integrating Wind Turbine Generators with different penetrati roposed 15-Bus System on the Voltage Profile and Losses	
		plying the Voltage Profile study through ETAP 6.0.0 Power Statio	
5.2	2.1.1	The Base Case System	69
	2.1.2 th (5%	Integrating the Wind Turbine Generators into the 15-Bus Syste -30%) Penetration Levels	
5.2.2 Optii		plying the Voltage Profile study using the Genetic Algorithm on Technique under MATLAB environment	73
5.2	2.2.1	The Load Flow of the Base System	74
	2.2.2 0%) Pe	Wind Turbine Generators integrated to the 15-Bus System with	(5% 76

5.3 Effect of Integrating Wind Turbine Generators with different penetral levels to the IEEE 72-Bus System on the Voltage Profile and Losses	
5.3.1 Applying the voltage profile study through ETAP Simulation	
5.3.2 Applying the Voltage Profile study using Genetic Algorithm optim Technique under MATLAB environment	ization
5.3.2.1 The Load Flow of IEEE 72- Bus System in Base Case	83
5.3.2.2 The Integrated 72- Bus Distribution Network with (5% - 30% WTGs Penetration	
5.4 The Technical Benefits of Employing the WTGs as DGs into the Distriction Network	
5.4.1 The Voltage Profile Improvement Index (VPII)	90
5.4.2 The Line Losses Reduction Index (LLRI)	92
5.5 Summary	93
THE VOLTAGE STABILITY STUDY ON THE TWO CASE STUDIES	95
6.1 Introduction	95
6.2 Effect the Integration of Wind Energy with different penetration level Proposed 15-Bus System on the Voltage Stability	
6.2.1 Applying the Voltage Stability Study through ETAP Simulation	96
6.2.1.1 The Load Perturbation of the Bus 13 in the Base Case	96
6.2.1.2 The Load Perturbation of the Bus 13 in the (5% -30%) WTG Penetrations	
6.2.2 Applying the Voltage Stability Study through MATLAB environ 101	ıment
6.2.2.1 The Load Perturbation of the Bus 13 in the Base Case	101
6.2.2.2 The Load Perturbation of the Bus 13 in the (5% -30%) WTG Penetrations	
6.3 Effect the Integration of Wind Energy with different penetration leve IEEE 72-Bus System on the Voltage Stability	
6.3.1 Applying the Voltage Stability Study	106
6.3.1.1 The Load Perturbation of the Bus 23 in the Base Case	106
6.3.1.2 The Load Perturbation of the Bus 23 in the (5% -30%) WTG Penetrations	
6.4 The Voltage Stability Margin Determination	111
6.5 The Voltage Stability Study through The On-Load Optimization	
6.6 Summary	116
CHAPTER 7	118
Conclusions and Recommendations	118
Deferences	122

List of Abbreviations

DG Distributed Generator MV Medium Voltage LV Low Voltage

DFIG Doubly Fed Induction Generator
KVL Kirchhoff's Voltage Law
KCL Kirchhoff's Current Law
GHG Green House Gases
RES Renewable Energy Sources

ppm Part Per Million
PVs PhotoVoltaic Units
WTGs Wind Turbine Generators
GA Genetic Algorithm
AI Artificial Intelligence

VPII Voltage Profile Improvement Index LLRI Line Losses Reduction Index VSM Voltage Stability Margin

List of Figures

E' 0.1		10
Figure 2-1:	Power transfer to node as function of the voltage	19
Figure 2-2:	Typical power curve of a 1500kW pitch regulated wind turbine with a	30
	cut-out speed of 25 m/s (the broken line shows the hysteresis effect)	
Figure 2-3:	Typical Wind Turbine System Power Curve	31
Figure 2-4:	Basic components of a wind turbine unity	32
Figure 2-5:	Typical wind turbine configurations	34
Figure 2-6:	Genetic Algorithm Operators	41
Figure 4-1:	The proposed model of power system is fed from a main source only	48
	(Base System)	
Figure 04-2:	The proposed model of power system is fed from a main source	51
	integrating with four units of wind Turbines	
Figure 4-3:	The proposed model of power system is fed from a main source	52
	integrating with four units of Photovoltaic.	
Figure 4-4:	The proposed model of power system is fed from a main source	52
C	integrating with four units of Diesel generators.	
Figure 04-5:	The Voltage Profile for the 400 V load buses in the base case	54
Figure 04-6:	The Voltage Profile for the 11 kV V buses in the base case	54
Figure 04-7:	The Voltage Profile for the 400 V load buses in the cases of DGs	60
118010 0 . / .	contributions	00
Figure 04-8:	The Voltage Profile for the 11 kV load buses in the cases of DGs	60
118010 0 . 0.	contributions	00
Figure 04-9:	The active power loading for the bus 9 of LV buses	62
Figure 4-10:	The active power loading for the bus 14 of MV buses	62
Figure 4-11:	P Q V curve for Bus 9	63
Figure 04-12:	P Q V curve for Bus 14	63
Figure 4-13:	The Amp. loading curve for the 400 V load bus 9.	64
Figure 04-14:	The Amp. loading curve for the 11 kV load bus 14.	64
Figure 5-1:	The voltage profile for the LV buses of the 15-bus system in the base	70
riguic 3-1.	case	70
Figure 5-2:	The voltage profile for the MV buses of the 15-bus system in the base	70
rigule 3-2.		70
Figure 5.2.	case The voltage profile for the 400 V load buses of the (5%-30%) WTGs	72
Figure 5-3:		12
E: 5 4.	penetration integrated with the 15-bus system	73
Figure 5-4:	The voltage profile for the 11 kV buses of the (5%-30%) WTGs	13
E: 5 5.	penetration integrated with the 15-bus system	75
Figure 5-5:	The voltage profiles for 400 V load buses of the Base Case System	75
Ei 5 (.	under MATLAB environment	75
Figure 5-6:	The voltage profiles for 11 kV buses of the Base Case System under	75
T: 5.7	MATLAB environment	
Figure 5-7:	Flow chart of the proposed methodology	77
Figure 5-8:	Voltage Profiles for the LV buses of the of the (5% -30%) WTGs	78
	penetration integrated with base case using GAo	
Figure 5-9:	Voltage Profiles for the MV buses of the of the (5% -30%) WTGs	78
	penetration integrated with base case using GAo	_
Figure 5-10:	Single line Diagram of the IEEE Comprehensive Test Feeder	81
Figure 5-11:	Single – Line Diagram of the IEEE Comprehensive Test feeder in	82
	ETAP space	

Figure 5-10:	The voltage profile for the LV buses of the IEEE-72 bus system at	86
	base case	
Figure 5-11:	The voltage profile for the MV buses of the IEEE-72 bus system at	86
	base case	
Figure 5- 14:	The voltage profile for the LV buses of the integrated (5%-30%) WTG penetration into the IEEE-72 bus system	88
Figure 5- 15:	The voltage profile for the MV buses of the integrated (5%-30%)	88
8	WTG penetration into the IEEE-72 bus system	
Figure 6-1:	P-V Curve for the Bus 13 of the base model	97
Figure 6-2:	V-Q Curve for the bus 13 of the base model	97
Figure 6-3:	P-V Curve for the Bus 13 of the integrated (5% - 30%) WTGs	98
	penetration to the 15-Bus system using ETAP Results	
Figure 6-4:	V-Q Curve for the Bus 13 of the integrated (5% - 30%) WTGs	99
	penetration to the 15-Bus system using ETAP Results	
Figure 6-1:	P-V Curve for the Bus 13 of the base model using MATLAB Results	102
Figure 6-2:	V-Q Curve for the Bus 13 of the base model using MATLAB Results	102
Figure 6-3:	P-V Curve for the Bus 13 of the integrated (5% - 30%) WTGs	104
	penetration to the 15-Bus system using MATLAB Results	
Figure 6-4:	V-Q Curve for the Bus 13 of the integrated (5% - 30%) WTGs	105
	penetration to the 15-Bus system using MATLAB Results	
Figure 6-9:	P-V Curve for the Bus 23 of the Base Model	107
Figure 6- 10:	V-Q Curve for the Bus 23 of the Base Model	109
Figure 6-11:	P-V Curve for Bus 23 of the Integrated (5%-30%) WTGs Penetration	110
	with the IEEE 72-bus system	
Figure 6-12:	V-Q Curve for Bus 23 of the Integrated (5%-30%) WTGs Penetration	110
	with the IEEE 72-bus system	
Figure 6- 13:	P-V Curve for Bus 23 of the Integrated (5%-30%) WTGs Penetration	116
	with the IEEE 72-bus system through On-Load Optimization	

List of Tables

Table 2-1:	Classification of power system stability	17
Table 2-2:	Wind turbine concepts	32
Table 2-3:	Advantages and disadvantages of using power electronics in wind turbine systems	35
Table 2-4:	Classification of Distributed Generations	36
Table 2-5:	Main power system influences from the wind energy integration	38
Table 4-1:	2-Winding Transformer Input Data	48
Table 4-2:	Load Buses Input Data	49
Table 04-3:	Operating Voltages and Active and Reactive Power for 400 V	51
14010 0 . 5.	load buses in base case	0.1
Table 4-4:	Operating Voltages and Active and Reactive Power for 11 kV	51
14010 1 1.	buses in base case	01
Table 4-5:	Operating Voltages and Active and Reactive Power for 400 V	55
14010 . 0.	load buses in Wind Turbine Model	
Table 4-6:	Operating Voltages and Active and Reactive Power for 11 kV	55
14010 . 0.	buses in Wind Turbine Model	
Table 4-7:	Operating Voltages and Active and Reactive Power for 400 V	57
14010 . , ,	load buses in Photovoltaic Model	
Table 4-8:	Operating Voltages and Active and Reactive Power for 11 kV	57
	buses in Photovoltaic Model	
Table 4-9:	Operating Voltages and Active and Reactive Power for 400 V	58
14010	load buses in Diesel Model	
Table 4-10:	Operating Voltages and Active and Reactive Power for 11 kV	59
	buses in Diesel Model	
Table 4-11:	The Total Losses in all DGs Cases	61
Table 5-1:	Operating values for the power, total losses, and voltage drop for	71
	the (5%-30%) WTG penetrations integrated into the 15-bus	
	system	
Table 5-2:	The MATLAB load flow results of the system buses in the base	74
	case	
Table 5-3:	Operating values for the power, total losses, and voltage drops for	76
	the (5%-30%) WTGs penetrations integrated into the 15-bus	
	system under MATLAB	
Table 5-4:	The load flow results for the base System of the IEEE-72 bus	82
Table 5-5:	Operating Values for the total power losses, and Voltage Drops	85
	for the (5% - 30%) WTG penetration integrated into 72-Bus	
	System under MATLAB	
Table 5-6:	The voltage profile improvement index for the 15-bus system	89
Table 5-7:	The voltage profile improvement index for the IEEE 72-bus	89
	system	
Table 5-8:	The line losses reduction index for the 15-bus system	91
Table 5-9:	The line losses reduction index for the IEEE 72-bus system	91
Table 6-1:	Operating Voltages and Active and Reactive Power for the load	94
	bus 13 of the base case from ETAP simulation	
Table 6-2:	The Operating Voltage and Active Power for the Bus 13 in the	96
	cases of (5% -30%) WTGs Penetrations	

Table 6-3:	The Operating Voltage and Reactive Power for the Bus 13 in the cases of (5% -30%) WTGs Penetrations	97
Table 6-4:	Operating voltage and active and reactive power for the load bus	101
	13 in the base case under MATLAB	
Table 6-5:	The Operating Voltage and Active Power for the Bus 13 in the	103
	cases of (5% -30%) WTGs Penetrations under MATLAB	
Table 6-6:	The Operating Voltage and Reactive Power for the Bus 13 in the	104
	cases of (5% -30%) WTGs Penetrations under MATLAB	
Table 6-7:	Operating Voltages and Active and Reactive Power for the load	107
	bus 23 of the base case	
Table 6-8:	The Operating Voltage and Active Power for the Bus 23 in the	109
	cases of (5% -30%) WTGs Penetrations	
Table 6-9:	The Operating Voltage and Reactive Power for the Bus 23 in the	109
	cases of (5% -30%) WTGs Penetrations	
Table 6-10:	The voltage stability margin of the 15-bus system using ETAP	112
	and MATLAB results	
Table 6-11:	The voltage stability margin of the IEEE 72-bus system	112
Table 6-12:	The Operating Values of Voltage, Active Power, and Losses for	113
	the Bus 23 in the cases of (5% and 10%) WTGs Penetrations	
	through On-Load Optimization	
Table 6-13:	The Operating Values of Voltage, Active Power, and Losses for	114
	the Bus 23 in the cases of (15% and 20%) WTGs Penetrations	
	through On-Load Optimization	
Table 6-14:	The voltage stability margin of the IEEE 72-bus system using	115
	On-Load Optimization results	

ABSTRACT

The thesis presents a detailed study of the influence of distributed generation penetration in distribution networks towards the enhancement of voltage profile on distribution feeders and voltage stability margin determination so that no voltage instability problem may occur. Distributed generation in the modern systems may include both renewable sources such as wind and PV installations, as well as conventional such diesel-electric units. The main purpose implementation of distributed generation is to avoid the voltage collapse and maintain the voltage profile over feeders. Hence avoiding any probability of voltage instability as well as reduction of power losses over lines. The thesis also presents a survey of the relevant published studies on this subject. The research work here is divided according to subjects such as types of DG applied, methods of optimization used, and renewable sources of energy.

The problem formulation and methods of DG application in the distribution network are also presented. The methods of problem solution using computer modeling and simulation techniques is described and thoroughly discussed.

Detailed studies of different types of DG applicable in distribution systems are considered and performed. Studies show the differences between famous DG technologies and conditions of their integration with distribution networks.

The thesis is divided into two main parts concerned to the two presented studies. The first part is concerning by the voltage profile and losses study. The study is performed on two phases. First is the study the effect of integrating different types of distribution generators on the voltage profile. Second is the study of the effect of integrating the wind turbine generators in different penetration levels into the distribution network on the voltage profile and the line losses. The voltage profile and losses study is applied to the two case studies.