The effect of intrathecal and epidural supplementation of magnesium sulphate combined with spinal anesthesia on intra-operative and postoperative pain relief in lower abdominal surgeries

Thesis

Submitted for partial fulfillment of M.D.degree in Anesthesia

 $\mathcal{B}y$

Ahmed Abdelfattah Abdelfattah Elsayed

M.B.B.Ch., M.Sc. anesthesia Ain Shams University

Under supervision of

Prof. Dr. Mostafa Kamel Fouad Saleh

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Alfred Maurice Said

Assistant Professor of Anesthesia and Intensive Care Faculty of medicine - Ain Shams University

Dr. Amal Hamed Rabie

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgment

First of all thanks to "Allah"

I would like to express my and cordial thanks to **Prof. Dr. Mostafa Kamel Fouad Saleh** Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his encouragement, advice and unlimited support have guided me through every step of this work.

I would like to express my highest appreciation and gratitude to *Dr. Alfred Maurice Said* Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her generous support and continuous encouragement.

Very special thanks should go to *Dr. Amal Hamed Rabie*, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his sincere help and valuable advice through the whole work.

Ahmed Abdelfattah

Aim of the study

The aim of the this study is to evaluate the effect of intrathecal and epidural supplementation of magnesium sulphate combined with spinal anesthesia on improving the quality of intra-operative anesthesia and reduction of post-operative pain and narcotic requirements.

List of Figures

Fig. No.		Title)		Page No.
Figure (1): Late	eral view	of the verteb	oral columr	1	4
Figure (2): Sag	gittal sect	ion through	ı lumbar v	ertebrae	(A).
Common feature	es of ve	rtebrae (B, C	<i>C</i>)		5
Figure (3):The	spinal cor	·d		•••••	9
Figure (4): S	agittal vi	iew throug	h lumbar	vertebra	e and
sacrum	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	10
Figure (5): Stru	cture of a	typical spir	nal nerve		10
Figure (6): Blo	od supply	of the spina	al cord		11
Figure (7): Sitti	ng positio	on for neura	xial blocka	de	19
Figure (8):	Lateral	decubitus	position	for ne	uraxial
blockade		• • • • • • • • • • • • • •			20
Figure (9): Para	amedian a	pproach			23
Figure(10): Dif	ferent typ	es of spinal	needle		24
Figure (11): Lu	mbar epic	dural anesth	esia; midlir	ne approa	ch33
Figure (12):	Different	types of	needles	used for	CSE
technique					38
Figure (13): Lo	cal anesth	netics, esters	and amide	es with ch	emical
structures					52
Figure (14): Gl	utamate re	eceptors			65
Figure (15): Vi	sual analu	ige scale			73
Figure (16): Pa	in intensit	y scale		•••••	81
Figure (17): Ti	me to read	ch highest d	ermatomal	level am	ong all
groups					86

Figure (18): The percentage of maximum level of sensory
block among all groups
Figure (19): Comparison between all groups as regards
duration of sensory block90
Figure (20): Comparison between all studied groups as regards
density of motor block93
Figure (21): Comparison between all studied groups as regards
time to reach the maximum degree of the motor
block95
Figure (22): Comparison between all studied groups as regards
duration of the motor block97
Figure (23): Comparison between all studied groups as regards
modified Wilson scale for intra-operative sedation
assessment
Figure (24): Comparison between all groups as regards
modified Wilson scale for postoperative sedation
assessment
Figure (25): Comparisons among the four groups as regards
VAS mean score
Figure (26): Comparison between all studied groups as regards
mean pain intensity score
Figure (27): Comparison between among the groups as regards
mean of total requirements of rescue analgesia 109

List of Contents

Title	Page No.
Introduction	
Review of Literature	
- Anatomical considerations	3
- Physiological considerations	12
- Neuroaxial Blockade	18
- Local anesthetics pharmacology	48
- Additives to local anesthetics in regional anesthesia	56
Patients and methods	69
Results	84
Discussion	111
Summary	130
Conclusion	135
References	136
Arabic Summary	

List of Tables

Tab. No.	Title	Page No.
Table (1): N	Nerve fiber classification	14
Table (2): (Contraindications of neuroaxial blockad	le18
Table (3): I	Densities and baricities of commonly	used local
anesthetics f	for spinal anesthesia	25
Table (4): N	Modified Wilson Sedation Scale	80
Table (5): (Comparison in demographic data amon	g the four
groups		84
	Comparison among the four different	
regards time	to reach highest dermatomal level	85
Table (7): (Comparison between each two groups	as regards
time to rea	ach highest dermatomal level. The	multiple
comparisons	s Post-hoc test or least significant	difference
(LSD)		86
Table (8): (Comparison among the four different	groups as
regards max	imum level of sensory block	87
Table (9): (Comparison between each two groups	as regards
maximum le	evel of sensory block. The multiple co	mparisons
Post-hoc tes	t or least significant difference (LSD).	88
	Comparison among the four groups	
	sensory block	_

Table (11): Comparison between each two groups as
regards duration of sensory block. The multiple comparisons
Post-hoc test or least significant difference (LSD)90
Table (12): Comparison among the four different groups as
regards density of motor block91
Table (13): Comparison between each two groups as
regards density of motor block. The multiple comparisons
Post-hoc test or least significant difference (LSD)92
Table (14): Comparison among the four different groups as
regards time to reach the maximum degree of the motor
block94
Table (15): Comparison between each two groups as
regards time to reach maximum degree of the motor block.
The multiple comparisons Post-hoc test or least significant
difference (LSD)94
Table (16): Comparison among the four different groups as
regards duration of motor block
Table (17): Comparison between each two groups as
regards duration of the motor block. The multiple
comparisons Post-hoc test or least significant difference
_
(LSD)96
(LSD)
Table (18): . Comparison among the four different groups as
Table (18): . Comparison among the four different groups as regards mean arterial blood pressure intra-operatively98

Table (20): Comparison among the four groups as regards
sedation assessment intraoperative 100
Table (21): Comparison between each two groups as
regards sedation assessment intraoperative. The multiple
comparisons Post-hoc test or least significant difference
(LSD) 101
Table (22): Comparison among the four groups as regards
sedation assessment postopeative102
Table (23): Comparison between each two groups as
regards sedation assessment postoperative. The multiple
comparisons Post-hoc test or least significant difference
(LSD) 103
Table (24): Comparison among the four groups as regards
Visual Analogue Scale mean score
Table (25): Comparison between each two groups as
regards Visual Analogue Scale mean score. The multiple
comparisons Post-hoc test or least significant difference
(LSD) 105
Table (26): Comparison among the four different groups
regards Pain intensity score106
Table (27): Comparison between each two groups as
regards Pain Intensity Score. The multiple comparisons
(Post-hoc test or least significant difference,
LSD) 108

Table (28): Comparison among the four different groups as				coups as		
regards	mean	of	total	requirements	of	rescue
analgesia	ı1					109

List of Abbreviations

Abbrev.	Meaning
ASA	American society of anesthesiologist
CNS	Central nervous system
COPD	Chronic Obstructive Pulmonary Disease
COX	Cyclooxygenase
CSEA	Combined Spinal Epidural Anesthesia
CSF	Cerebrospinal fluid
CT	Computerized tomography
DST	Double Segment Technique
EA	Epidural Abscess
FRC	Functional Residual Capacity
GABA	Gama amino butyric acid
HR	Heart Rate
I.N.R	International Normalization Ratio
IVRA	Intravenous Regional Anesthesia
MAP	Mean Arterial Pressure
$MgSO_4$	Magnesium sulfate
NIBP	Non-invasive Blood Pressure
NMDA	N-methyl-d-aspartate
NMDARs	N-methyl-d-aspartate Receptor
NSAIDs	Non-Steroidal Anti-inflammatory Drugs
P.T	Prothrombin Time
P.T.T	Partial Throbmoplastin Time
PABA	Para Aminobezoic Acid
PDPH	Post Dural Puncture Headache
PNS	Peripheral nervous system
PSPS	Post spinal pain syndrome
SpO ₂	Peripheral Oxygen Saturation
SST	Single Segment Technique
TNS TRI	Transient Neurologic Symptoms Transient Radicular Irritation
VAS	Visual analogue scales
	Mu Receptor
μ δ	Delta receptor
о К	Kappa receptor
r	rappa receptor

Introduction

Magnesium (Mg²⁺) is a non-competitive NMDA receptor antagonist that blocks ion channels in a voltage-dependent fashion. Numerous clinical studies investigating the effects of intravenously injected magnesium sulphate (MgSo₄) on intra-operative and post-operative pain perception have shown that MgSo₄ reduces the intra-operative consumption of hypnotic agents and analgesics (*Kara et al., 2002*).

NMDA receptor antagonists prevent central sensitization induced by peripheral nociceptive stimulation. They abolish hypersensitization once it is established by blocking dorsal horn NMDA receptor activation induced by excitatory amino acid transmitters, such as glutamate and aspartate (*Woolf and Thompson*, 1991).

Adding magnesium to spinal anesthesia should improve the quality, and prolong the duration of spinal anesthesia and reduce the incidence of side effects observed when local anesthetics are used in high doses or combined with opioids, such as respiratory depression, hemodynamic instability, pruritus, urinary retention, and severe nausea and vomiting (*Özalevli et al.*, 2005).

Intrathecal administration of magnesium sulphate has been shown to be more effective than intravenous administration due to the limitation of magnesium transfer across the blood brain barrier (*De Kock and Lavand'homme*, 2007).

Patients and Methods

This study was conducted in the obstetric department, general surgery department and urology department of Ain Shams University hospitals on one hundred and twenty patients undergoing elective lower abdominal surgeries after approval of Ain Shams University medical ethics committee in 2010. A written consent was taken from all patients who were either class I or II according to the classification of the American Society of Anesthesiologists (ASA I or II). The age of the patients ranged between 21-50 years old and they were of both sexes. The expected duration of surgery was not more than 2 hours.

This study was a prospective double blind randomized controlled study where the patients were allocated into four equal groups, thirty patients each, according to magnesium sulphate supplementation as an adjunct to spinal anesthesia:

A. Group (1): [S]

30 patients received intrathecal injection of 0.5% hyperbaric bupivacaine 15 mg (3 ml bupivacaine 5 mg/ml in hyperbaric solution) combined with 25 µg fentanyl (0.5 ml) and 1 ml saline 0.9%. Total volume of intrathecal injection was 4.5 ml.

B. Group(II):[IM]

30 patients received intrathecal injection of 0.5% hyperbaric bupivacaine 15 mg (3 ml bupivacaine 5 mg/ ml in hyperbaric solution) combined with 25 µg fentanyl (0.5 ml) and 100 mg of 10% magnesium sulphate (1 ml). Total volume of intrathecal injection was 4.5 ml.

C. Group (III): [EM]

30 patients received intrathecal injection of 0.5% hyperbaric bupivacaine 15 mg (3 ml bupivacaine 5 mg/ ml in hyperbaric solution) combined with 25 µg fentanyl (0.5 ml) and 1 ml saline0.9%. In addition, to an epidural dose of magnesium sulphate 100 mg of 2% solution (5 ml) was given to be repeated hourly including the first 24 hours of the postoperative period. Total volume of intrathecal injection was 4.5 ml in addition to an epiduaral dose of magnesium.

D. Group (IV): [IEM]

30 patients received intrathecal injection of 0.5% hyperbaric bupivacaine 15 mg (3 ml bupivacaine 5 mg/ ml in hyperbaric solution) combined with 25 µg fentanyl (0.5 ml) solution) and 100 mg of 10% magnesium sulphate (1 ml). In addition, to an epidural dose of magnesium sulphate 100 mg of 2% solution (5 ml) was given to be repeated hourly including the first postoperative period of the 24 hours. Total volume of