# The role of pseudocyst of *Trichomonas* vaginalis in transmission of infection

#### **Thesis**

Submitted to Faculty of Medicine, Ain Shams University For Partial Fulfillment of Master Degree in Basic Medical Science (Parasitology)

### By

## Heba Mohamed Awaed El Naggar

M.B., B.Ch. Demonstrator of Parasitology Faculty of Medicine, Ain Shams University

#### **Supervisors**

#### Prof. Dr. Mahmoud Mohamed El Sibaei

Professor of Parasitology Faculty of Medicine, Ain Shams University

## Prof. Dr. Salwa Mohamed Fathy Abou El Seoud

Professor of Parasitology Faculty of Medicine, Ain Shams University

## Dr. Abeer Fathy Badawy

Lecturer of Parasitology
Faculty of Medicine, Ain Shams University

Parasitology Department Faculty of Medicine Ain Shams University 2013

## بِنِيْمُ لِسَّهُ البَّحِزُ البَّحِيْرِيْ

# وقُل اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلُكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَرَسُولُهُ وَالْمُؤْمِنُونَ

صدق الله العظيم سورة التوبة آية (١٠٥)



Firstly, thanks to ALLAH, who gave me the power to finish this work.

No words can express my sincere gratitude and deep appreciation to **Prof. Dr. Mahmoud Mohamed El Sibaei,** Professor of Parasitology, Faculty of medicine, Ain Shams University, for his thorough suggestions, precious advice and continuous guidance throughout the whole work.

I wish to express my sincere gratitude and deep appreciation to Prof. Dr. Salwa Mohamed Fathy Abou El Seoud, Professor of Parasitology, Faculty of Medicine, Ain Shams University, for her kind help continuous encouragement and guidance.

My deep thanks go to **Dr. Abeer Fathy Badawy,** Lecturer in Parasitology, Faculty of Medicine, Ain Shams University, for her faithful advice and help.

A word of thanks must go to **Dr. Lobna Shash,** Assistant Professor of Pathology, Faculty of Medicine, Ain Shams University, for her kind help and guidance.

Last but not least, many thanks to all the members of Parasitology department, Faculty of Medicine, Ain Shams University, for their great help.



## **Abstract**

## The role of pseudocyst of *Trichomonas vaginalis* in transmission of infection

## By **Heba Mohamed Awaed El Naggar** M.B., B.Ch.

Demonstrator of Parasitology Faculty of Medicine.
Ain Shams University

T.vaginalis, parasitic protists of the urogenital tract, display a trophozoite and a pseudocyst stage. The pseudocyst form appears under unfavorable environmental conditions when the flagella are internalized, and a true cell wall is not formed. Pseudocysts are competent to divide but their role in trichomonas life cycle has not yet confirmed. In this study, the ability of the intra-vaginally inoculated pseudocysts to induce trichomoniasis in infected mice was evaluated in comparison to the trophozoites. Pseudocyst induction was performed physically by thermal-freezing cycle method. The infectivity of pseudocyst was proved by the presence of T. vaginalis parasite in mice vaginal washes and by histopathological studies. In vitro, T. vaginalis trophozoites and pseudocysts were found to possess several different proteinase bands by non-denaturing gelatin-SDS-PAGE (zymography). So, T. vaginalis pseudocysts are active forms that can induce trichomoniasis.

**Key words**: *Trichomonas vaginalis*; pseudocysts; gelatin-SDS-PAGE; proteinase.

## **Contents**

|                       |                                         | Page |
|-----------------------|-----------------------------------------|------|
| Introduction          |                                         | 1    |
| Review of literature: |                                         | 3    |
| T                     | RICHOMONAS VAGINALIS                    | •    |
|                       | History and Taxonomic Classification    | 3    |
|                       | Morphology                              | 3    |
| •                     | Life Cycle                              | 9    |
|                       | Epidemiology and Modes of Transmission  | 11   |
|                       | Clinical Manifestations                 | 12   |
|                       | Complications                           | 14   |
|                       | Pathogenesis                            | 15   |
|                       | Immunology                              | 19   |
|                       | Immune system evasion                   | 20   |
|                       | Diagnosis                               | 21   |
|                       | Treatment                               | 28   |
|                       | Prevention and control                  | 31   |
| Aim of t              | he work                                 | 32   |
|                       | the work                                | 33   |
| Materia               | ls and methods                          | 34   |
|                       | ••••••••••••••••••••••••••••••••••••••• | 54   |
| Discussion            |                                         | 71   |
| Summary & Conclusion  |                                         | 79   |
| Recommendations       |                                         | 81   |
| References            |                                         | 82   |
| Arabic summary        |                                         | -    |

## **List of Abbreviations**

| APS                             | Ammonium persulfate                      |
|---------------------------------|------------------------------------------|
| °C                              | Degree Celsius.                          |
| μg                              | microgram.                               |
| μl                              | Microliter.                              |
| μm                              | Micrometer.                              |
| Bis                             | bis-methylene-acrylamide C7 H10 N2 O2.   |
| acrylamide                      |                                          |
| CAF                             | Chromosome aberration factor .           |
| CDF                             | Cell detaching factor.                   |
| Cm                              | Centimeter.                              |
| CP                              | Cysteine proteinase.                     |
| CPLM                            | Cysteine peptone liver infusion maltose. |
| D.P.I                           | days post infection.                     |
| DNA                             | Deoxy ribonucleic acid.                  |
| DTT                             | Dithiothreitol.                          |
| EDTA                            | Ethyl-ene diamine tetra acetic acid.     |
| ELISA                           | enzyme-linked immune sorbent assay       |
| g                               | gram.                                    |
| HIV                             | Human immuno deficiency virus.           |
| HPV                             | Human papilloma virus.                   |
| Hrs.                            | Hours.                                   |
| Ig                              | Immunoglobulin.                          |
| Ig A                            | Immunoglobulin A.                        |
| Ig G                            | Immunoglobulin G.                        |
| IU                              | International unit.                      |
| K <sub>2</sub> HPO <sub>4</sub> | Dipotassium hydrogen phosphate dibasic.  |
| kDa                             | Kilodalton.                              |

i

## List of Abbreviations (Cont.)

| Kg                               | Kilogram.                                 |
|----------------------------------|-------------------------------------------|
| KH <sub>2</sub> PO <sub>4</sub>  | Potassium dihydrogen phosphate monobasic. |
| L                                | Liter.                                    |
| M                                | Mole.                                     |
| Ma                               | Milliampere.                              |
| MCA                              | Modified Columbia Agar.                   |
| mg                               | Milligram.                                |
| MGJ                              | Modified Glycerol jelly.                  |
| Min                              | Minutes.                                  |
| ml                               | Milliliter.                               |
| Mm                               | Millimeter.                               |
| mM                               | Millimole.                                |
| MW                               | Molecular weight.                         |
| N                                | Normal.                                   |
| Na Cl                            | Sodium chloride.                          |
| Na OH                            | Sodium hydroxide.                         |
| Na <sub>2</sub> HPO <sub>4</sub> | Disodium hydrogen phosphate dibasic.      |
| NaH <sub>2</sub> PO <sub>4</sub> | Sodium dihydrogen phosphate monobasic.    |
| nm                               | Nanometer.                                |
| No.                              | Number.                                   |
| Pap. smear                       | Papaniculaou smear                        |
| PBS                              | Phosphate buffered saline.                |
| PCR                              | Polymerase chain reaction.                |
| ppm                              | Parts per million.                        |
| rpm                              | Round per minute.                         |

## List of Abbreviations

## List of Abbreviations (Cont.)

| SDS          | Sodium dodecyl sulphate.                   |
|--------------|--------------------------------------------|
| SDS-         | Sodium dodecyl sulphate-polyacrylamide gel |
| PAGE         | electrophoresis.                           |
| St.          | Standard.                                  |
| STD          | Sexually transmitted disease               |
| T. foetus    | Tritrichomonas foetus.                     |
| T. vaginalis | Trichomonas vaginalis.                     |
| TEMED        | Tetra methyl ethyl ene diamine.            |
| TYM          | Trypticase, yeast extract, maltose.        |
| V            | Voltage.                                   |
| VECs         | Vaginal epithelial cells.                  |

## List of Figures

## **List of Figures**

| Fig. | Title                                                  | Page |
|------|--------------------------------------------------------|------|
| 1    | T. vaginalis trophozoite                               | 5    |
| 2    | T. vaginalis pseudocyst by transmission                |      |
|      | electron microscopy.                                   | 6    |
| 3    | Videomicroscopy frames of <i>T. foetus</i> observed    |      |
|      | during flagellar internalization.                      | 8    |
| 4    | <b>A–C.</b> the recurrent flagellum (black arrow) is   |      |
|      | already internalized, whereas the anterior             |      |
|      | flagella (AF) are in the process of                    |      |
|      | internalization. <b>D–E.</b> Two anterior flagella are |      |
|      | already internalized, whereas one anterior             |      |
|      | flagellum is still outside. Notice the flagellar       |      |
|      | canal (arrows) where the anterior flagella are         |      |
|      | going and that the cell displays a rotatory            |      |
|      | movement.                                              | 8    |
| 5    | T. foetus pseudocyst by videomicroscopy all            |      |
|      | the flagella are already internalized.                 | 9    |
| 6    | Trichomonas vaginalis life cycle                       | 10   |
| 7    | InPouch TV culture system                              | 23   |
| 8    | Collection of specimens from vagina of females         |      |
|      | while in the lithotomy position.                       | 35   |
| 9    | Sterile universal container for collection of          |      |
|      | urine specimens                                        | 36   |
| 10   | Unstained smear for T. vaginalis trophozoite           |      |
|      | from TYM culture medium showing flagella               |      |
|      | and undulating membrane (x100).                        | 54   |
| 11   | Unstained smear for T. vaginalis pseudocyst            |      |
|      | from TYM culture medium showing no flagella            |      |
|      | but rounded cyst with internal contents (x100).        | 55   |
| 12   | Unstained vaginal wash smear from albino               |      |
|      | mice inucliated by T.vaginalis trophozoites            |      |
|      | (Group II) showing epithelial cells and                |      |
|      | trophozoites (x 100).                                  | 56   |

iv

## List of Figures

## List of Figures (Cont.)

| Fig. | Title                                                                                        | Page |
|------|----------------------------------------------------------------------------------------------|------|
| 13   | Unstained vaginal wash smear from albino                                                     |      |
|      | mice inucliated by <i>T.vaginalis</i> pseudocysts                                            |      |
|      | (Group III) showing epithelial cells and                                                     | 57   |
| 14   | trophozoites after their transformation (x 100).  Normal vaginal epithelium (Group I) lamina | 57   |
| 17   | propria showing predominantly lymphocytic                                                    |      |
|      | inflammatory infilterate (H&Ex 200).                                                         | 58   |
| 15   | Vaginal epithelium infected by T.vaginalis                                                   | 50   |
|      | trophozoite (Group II), showing marked surface                                               |      |
|      | keratinization & predominantly lymphocytic                                                   |      |
|      | cell infiltration of the lamina propria                                                      |      |
|      | (H&Ex200).                                                                                   | 59   |
| 16   | Vaginal epithelium (Group II), showing                                                       |      |
|      | predominantly lymphocytic inflammatory                                                       |      |
|      | infiltration of the lamina propria (H&E x 400).                                              | 60   |
| 17   | Vaginal epithelium infected by T.vaginalis                                                   |      |
|      | pseudocyst (Group III), showing surface                                                      |      |
|      | keratinization & a predominantly lymphocytic                                                 |      |
|      | inflammatory infiltrate of the lamina propria                                                |      |
| 10   | (H&E x 200).                                                                                 | 61   |
| 18   | Vaginal lamina propria (Group III), showing                                                  |      |
|      | mixed inflammatory cell infiltration (H&E x                                                  | 62   |
| 19   | 400). Gelatin-SDS-PAGE patterns of <i>T. vaginalis</i>                                       | 02   |
| 19   | trophozoits, Proteinases appear as clear bands                                               |      |
|      | against a blue background.                                                                   | 64   |
| 20   | Curve showing the three antigen concentrations                                               | 0.   |
|      | (1, 2 and 3) of <i>T.vaginalis</i> trophozoits with                                          |      |
|      | molecular weights of the different proteinases.                                              | 65   |
| 21   | Gelatin-SDS-PAGE patterns of T.vaginalis                                                     |      |
|      | Pseudocyst, proteinases appear as clear bands                                                |      |
|      | against a blue background.                                                                   | 66   |

## List of Figures

## List of Figures (Cont.)

| Fig. | Title                                               | Page |
|------|-----------------------------------------------------|------|
| 22   | Curve showing the three antigen concentrations      |      |
|      | (1, 2 and 3) of <i>T.vaginalis</i> pseudocysts with |      |
|      | molecular weights of the different proteinases.     | 67   |
| 23   | Comparison between molecular weights (in            |      |
|      | KDa) of proteolytic bands of <i>T.vaginalis</i>     |      |
|      | trophozoite and pseudocyst in lane 1.               | 68   |

vi

## List of Tables

## **List of Tables**

| Table | Title                                                                                                                   | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Molecular weight of proteolytic bands of <i>T.vaginalis</i> trophozoite and pseudocyst as detected by gelatin-SDS-PAGE. | 69   |
| 2     | Common and specific proteolytic bands of <i>T.vaginalis</i> trophozoite and pseudocyst as detected by gelatin-SDS-PAGE. | 70   |

vii

## The role of pseudocyst of *Trichomonas* vaginalis in transmission of infection

#### Protocol of

Thesis Submitted to Faculty of Medicine, Ain Shams University For Partial Fulfillment of Master Degree in Medical Science (Parasitology)

### By

## Heba Mohamed Awaed El Naggar

M.B., B.Ch., Demonstrator of Parasitology Faculty of Medicine, AinShams University

## **Supervisors**

#### Prof.Dr. Mahmoud Mohamed El Sibaei

Professor of Parasitology Faculty of Medicine, Ain Shams University

## Prof.Dr. Salwa Mohamed Fathy Abou El Seoud

Professor of Parasitology Faculty of Medicine, Ain Shams University

## Dr. Abeer Fathy Badawy

Lecturer in Parasitology
Faculty of Medicine, Ain Shams University

Parasitology Department Faculty of Medicine Ain Shams University 2011

## Introduction

Trichomonas vaginalis is the most common non-viral sexually transmitted pathogen (Guenthner et al., 2003). The infection is prevalent in reproductive age women and is associated with vaginitis, endometritis, adnexitis, pyosalpinx, infertility, preterm birth, low birth weight, bacterial vaginosis, and increased risk of cervical cancer, HPV, and HIV infection (Fichorova,2009) .In men, its complications include urethritis, prostatitis, epididymitis, and infertility through inflammatory damage or interference with the sperm function (Bennett et al., 1989).

In addition to the trophozoite, pseudocyst is an another morphological form which is recently identified among genitourinary trichomonads (**Tasca and De carli, 2007**).

Pseudocysts were found in natural culture conditions and also under induction by hydroxyurea or cycles of cooling and warming cultures. They were studied by light microscopy, both scanning and transmission electron microscopy and by immunofluorescence microscopy (Benchimol. 2004). The ultrastructure of the trophozoite was compared to that of the where the latter appears under environmental conditions when the flagella are internalized, but a true cell wall is not formed (Pereira-Neves et. al., 2003).

Mariante et al.(2003) proved that *T.vaginalis* formes pseudocyst under natural and unfavorable conditions .Morphological variability of *T.vaginalis* was determined by different environmental factors such as temperature, pH, oxygen tension, carbohydrate, and contact with other cell types (Honigberg and Brugerollr, 1990). The transformation of both the ellipsoid and the spherical (pseudocysts) forms into trophozoite occurred once the parasite was in direct contact with the vaginal epithelial cells (VECs)(Arroyo et al., 1993:Arroyo and Alderete, 1995). Besides, the human erythrocytes and microorganisms of the vaginal flora induced morphological changes on T. vaginalis (Rend-on-Maldonado et al., 1998).

## Aim of the work

The aim of the present study is to clarify the role of T.vaginalis pseudocyst in transmission of trichomoniasis.

## Plan of the work:

#### 1. Collection of vaginal swabs:

- a- Oral consent will be taken from the patients before taking any samples.
- b- Full detailed history including: age, marital status,...ect
- c- Vaginal swabs and\or urine from symptomatic females in the reproductive age groups.
- d- Microscopic examination with direct wet smear method using saline, iodine, eosine and methylene blue.

## 2. Culture on Trypticase, yeast, and maltose (TYM) media.

#### 3. Assessment of pathogenicity of both trophozoite & pseudocyst:

#### A. In vitro assessment:

### The parasite separated from culture, will be subjected to:

testing the proteinase activity of the cell lysate by gelatin SDS - PAGE (Sodium-dodecyl-sulphate Polyacrylamide gel electrophoresis).

#### **B.** In vivo assessment:

Intra-vaginal injection of the parasite in estradiol treated albino mice.

#### **Group I:**

Estradiol treated albino mice infected by T.vaginalis trophozoite.

#### **Group II:**

Estradiol treated albino mice infected by T.vaginalis pseudo cyst.

#### **Group III:**

( **Control** group) Estradiol treated albino mice without infection.

Then, pathological study of the three groups will be performed and compared.